The ratio test for series in real Banach spaces
Content created by Louis Wasserman.
Created on 2025-12-30.
Last modified on 2025-12-30.
module functional-analysis.ratio-test-series-real-banach-spaces where
Imports
open import analysis.ratio-test-series-real-numbers open import elementary-number-theory.natural-numbers open import foundation.binary-transport open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import functional-analysis.absolute-convergence-series-real-banach-spaces open import functional-analysis.convergent-series-real-banach-spaces open import functional-analysis.real-banach-spaces open import functional-analysis.series-real-banach-spaces open import logic.functoriality-existential-quantification open import real-numbers.absolute-value-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.strict-inequality-nonnegative-real-numbers
Idea
To prove that a series
∑ aₙ in a real Banach space
converges, it is sufficient to show that
there exists a
nonnegative real number r
less than 1 such that for all
n, ∥aₙ₊₁∥ ≤ r∥aₙ∥. This condition is known as the
ratio test¶.
Definition
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where ratio-test-prop-series-ℝ-Banach-Space : Prop (lsuc l1) ratio-test-prop-series-ℝ-Banach-Space = ∃ ( ℝ⁰⁺ l1) ( λ r → le-prop-ℝ⁰⁺ r one-ℝ⁰⁺ ∧ Π-Prop ( ℕ) ( λ n → leq-prop-ℝ ( map-norm-ℝ-Banach-Space V ( term-series-ℝ-Banach-Space V σ (succ-ℕ n))) ( ( real-ℝ⁰⁺ r) *ℝ ( map-norm-ℝ-Banach-Space V ( term-series-ℝ-Banach-Space V σ n))))) ratio-test-series-ℝ-Banach-Space : UU (lsuc l1) ratio-test-series-ℝ-Banach-Space = type-Prop ratio-test-prop-series-ℝ-Banach-Space
Properties
The ratio test implies convergence
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where abstract is-convergent-ratio-test-series-ℝ-Banach-Space : ratio-test-series-ℝ-Banach-Space V σ → is-convergent-series-ℝ-Banach-Space V σ is-convergent-ratio-test-series-ℝ-Banach-Space H = is-convergent-is-absolutely-convergent-series-ℝ-Banach-Space ( V) ( σ) ( is-convergent-ratio-test-series-ℝ ( map-norm-series-ℝ-Banach-Space V σ) ( map-tot-exists ( λ r (r<1 , K) → ( r<1 , λ n → binary-tr ( leq-ℝ) ( inv (abs-real-ℝ⁰⁺ (nonnegative-norm-ℝ-Banach-Space V _))) ( ap-mul-ℝ ( refl) ( inv ( abs-real-ℝ⁰⁺ (nonnegative-norm-ℝ-Banach-Space V _)))) ( K n))) ( H)))
See also
External links
- Ratio test at Wikidata
Recent changes
- 2025-12-30. Louis Wasserman. The ratio test for convergence in real Banach spaces (#1716).