Modulated Cauchy sequences in complete metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-07.
Last modified on 2026-01-07.
{-# OPTIONS --lossy-unification #-} module metric-spaces.modulated-cauchy-sequences-complete-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import metric-spaces.complete-metric-spaces open import metric-spaces.limits-of-modulated-cauchy-sequences-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.modulated-cauchy-sequences-metric-spaces
Idea
A modulated Cauchy sequence in a complete metric space is a Cauchy sequence in the underlying metric space. Modulated Cauchy sequences in complete metric spaces always have a limit.
Definition
module _ {l1 l2 : Level} (M : Complete-Metric-Space l1 l2) where modulated-cauchy-sequence-Complete-Metric-Space : UU (l1 ⊔ l2) modulated-cauchy-sequence-Complete-Metric-Space = modulated-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Space M) is-limit-modulated-cauchy-sequence-Complete-Metric-Space : modulated-cauchy-sequence-Complete-Metric-Space → type-Complete-Metric-Space M → UU l2 is-limit-modulated-cauchy-sequence-Complete-Metric-Space x l = is-limit-modulated-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Space M) ( x) ( l)
Properties
Every Cauchy sequence in a complete metric space has a limit
module _ {l1 l2 : Level} (M : Complete-Metric-Space l1 l2) (x : modulated-cauchy-sequence-Complete-Metric-Space M) where abstract has-limit-modulated-cauchy-sequence-Complete-Metric-Space : has-limit-modulated-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Space M) ( x) has-limit-modulated-cauchy-sequence-Complete-Metric-Space = ind-Σ ( has-limit-modulated-cauchy-sequence-is-limit-cauchy-approximation-modulated-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Space M) ( x)) ( is-complete-metric-space-Complete-Metric-Space ( M) ( cauchy-approximation-modulated-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Space M) ( x))) lim-modulated-cauchy-sequence-Complete-Metric-Space : type-Complete-Metric-Space M lim-modulated-cauchy-sequence-Complete-Metric-Space = pr1 has-limit-modulated-cauchy-sequence-Complete-Metric-Space is-limit-lim-modulated-cauchy-sequence-Complete-Metric-Space : is-limit-modulated-cauchy-sequence-Metric-Space ( metric-space-Complete-Metric-Space M) ( x) ( lim-modulated-cauchy-sequence-Complete-Metric-Space) is-limit-lim-modulated-cauchy-sequence-Complete-Metric-Space = pr2 has-limit-modulated-cauchy-sequence-Complete-Metric-Space
If every modulated Cauchy sequence has a limit in a metric space, the metric space is complete
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where modulated-cauchy-sequences-have-limits-Metric-Space : UU (l1 ⊔ l2) modulated-cauchy-sequences-have-limits-Metric-Space = (x : modulated-cauchy-sequence-Metric-Space M) → has-limit-modulated-cauchy-sequence-Metric-Space M x module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (H : modulated-cauchy-sequences-have-limits-Metric-Space M) where is-complete-metric-space-modulated-cauchy-sequences-have-limits-Metric-Space : is-complete-Metric-Space M is-complete-metric-space-modulated-cauchy-sequences-have-limits-Metric-Space x = tot ( is-limit-cauchy-approximation-is-limit-modulated-cauchy-sequence-cauchy-approximation-Metric-Space ( M) ( x)) ( H (modulated-cauchy-sequence-cauchy-approximation-Metric-Space M x)) complete-metric-space-modulated-cauchy-sequences-have-limits-Metric-Space : Complete-Metric-Space l1 l2 complete-metric-space-modulated-cauchy-sequences-have-limits-Metric-Space = ( M , is-complete-metric-space-modulated-cauchy-sequences-have-limits-Metric-Space)
Recent changes
- 2026-01-07. Louis Wasserman and Fredrik Bakke. Refactor Cauchy sequences (#1768).