The Archimedean property of

Content created by Louis Wasserman.

Created on 2025-02-04.
Last modified on 2025-02-04.

{-# OPTIONS --lossy-unification #-}

module elementary-number-theory.archimedean-property-rational-numbers where
Imports
open import elementary-number-theory.archimedean-property-integer-fractions
open import elementary-number-theory.integer-fractions
open import elementary-number-theory.integers
open import elementary-number-theory.multiplication-integer-fractions
open import elementary-number-theory.multiplication-rational-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.action-on-identifications-binary-functions
open import foundation.binary-transport
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.identity-types

Definition

The Archimedean property of is that for any two rational numbers x y : ℚ, with positive x, there is an n : ℕ such that y is less than n as a rational number times x.

abstract
  archimedean-property-ℚ :
    (x y : ) 
      is-positive-ℚ x 
      exists   n  le-ℚ-Prop y (rational-ℤ (int-ℕ n) *ℚ x))
  archimedean-property-ℚ x y positive-x =
    elim-exists
      (    n  le-ℚ-Prop y (rational-ℤ (int-ℕ n) *ℚ x)))
      ( λ n nx<y 
        intro-exists
          ( n)
          ( binary-tr
              le-ℚ
              ( is-retraction-rational-fraction-ℚ y)
              ( inv
                ( mul-rational-fraction-ℤ
                  ( in-fraction-ℤ (int-ℕ n))
                  ( fraction-ℚ x)) 
                ap-binary
                  ( mul-ℚ)
                  ( is-retraction-rational-fraction-ℚ (rational-ℤ (int-ℕ n)))
                  ( is-retraction-rational-fraction-ℚ x))
              ( preserves-le-rational-fraction-ℤ
                ( fraction-ℚ y)
                ( in-fraction-ℤ (int-ℕ n) *fraction-ℤ fraction-ℚ x) nx<y)))
      ( archimedean-property-fraction-ℤ
        ( fraction-ℚ x)
        ( fraction-ℚ y)
        ( positive-x))

Recent changes