The Archimedean property of ℚ
Content created by Louis Wasserman.
Created on 2025-02-04.
Last modified on 2025-10-17.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.archimedean-property-rational-numbers where
Imports
open import elementary-number-theory.archimedean-property-integer-fractions open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integer-fractions open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositional-truncations open import foundation.transport-along-identifications open import logic.functoriality-existential-quantification
Definition
The
Archimedean property¶
of ℚ
is that for any two
rational numbers x y : ℚ
, with
positive x
, there is
an n : ℕ
such that y
is less than n
as a rational number times x
.
opaque unfolding is-positive-ℚ bound-archimedean-property-ℚ : (x y : ℚ) → is-positive-ℚ x → Σ ℕ (λ n → le-ℚ y (rational-ℤ (int-ℕ n) *ℚ x)) bound-archimedean-property-ℚ x y pos-x = let (n , nx<y) = bound-archimedean-property-fraction-ℤ ( fraction-ℚ x) ( fraction-ℚ y) ( pos-x) in n , binary-tr ( le-ℚ) ( is-retraction-rational-fraction-ℚ y) ( inv ( mul-rational-fraction-ℤ ( in-fraction-ℤ (int-ℕ n)) ( fraction-ℚ x)) ∙ ap-binary ( mul-ℚ) ( is-retraction-rational-fraction-ℚ (rational-ℤ (int-ℕ n))) ( is-retraction-rational-fraction-ℚ x)) ( preserves-le-rational-fraction-ℤ ( fraction-ℚ y) ( in-fraction-ℤ (int-ℕ n) *fraction-ℤ fraction-ℚ x) nx<y) archimedean-property-ℚ : (x y : ℚ) → is-positive-ℚ x → exists ℕ (λ n → le-ℚ-Prop y (rational-ℤ (int-ℕ n) *ℚ x)) archimedean-property-ℚ x y pos-x = unit-trunc-Prop (bound-archimedean-property-ℚ x y pos-x)
Corollaries
For any rational q
, there exists a natural number n
with q < n
abstract exists-greater-natural-ℚ : (q : ℚ) → exists ℕ (λ n → le-ℚ-Prop q (rational-ℕ n)) exists-greater-natural-ℚ q = map-tot-exists ( λ _ → tr (le-ℚ q) (right-unit-law-mul-ℚ _)) ( archimedean-property-ℚ one-ℚ q (is-positive-rational-ℚ⁺ one-ℚ⁺))
Recent changes
- 2025-10-17. Louis Wasserman. Reorganize signed arithmetic on rational numbers (#1582).
- 2025-10-09. Louis Wasserman. Multiplication of real numbers (#1384).
- 2025-03-01. Louis Wasserman. Reciprocals of nonzero natural numbers (#1345).
- 2025-02-04. Louis Wasserman. Archimedean property of
ℚ
(#1268).