Bases of directed trees
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-05-03.
Last modified on 2024-02-06.
module trees.bases-directed-trees where
Imports
open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.negation open import foundation.propositions open import foundation.transport-along-identifications open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-arithmetic-empty-type open import foundation.universe-levels open import graph-theory.walks-directed-graphs open import trees.directed-trees
Idea
The base of a directed tree consists of the nodes equipped with an edge to the root.
Definition
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) where base-Directed-Tree : UU (l1 ⊔ l2) base-Directed-Tree = direct-predecessor-Directed-Tree T (root-Directed-Tree T) module _ (b : base-Directed-Tree) where node-base-Directed-Tree : node-Directed-Tree T node-base-Directed-Tree = pr1 b edge-base-Directed-Tree : edge-Directed-Tree T node-base-Directed-Tree (root-Directed-Tree T) edge-base-Directed-Tree = pr2 b
Properties
The root is not a base element
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) where is-proper-node-base-Directed-Tree : (b : base-Directed-Tree T) → is-proper-node-Directed-Tree T (node-base-Directed-Tree T b) is-proper-node-base-Directed-Tree (x , e) refl = no-direct-successor-root-Directed-Tree T (x , e) no-walk-to-base-root-Directed-Tree : (b : base-Directed-Tree T) → ¬ ( walk-Directed-Tree T ( root-Directed-Tree T) ( node-base-Directed-Tree T b)) no-walk-to-base-root-Directed-Tree ( pair .(root-Directed-Tree T) e) refl-walk-Directed-Graph = no-direct-successor-root-Directed-Tree T (root-Directed-Tree T , e) no-walk-to-base-root-Directed-Tree b (cons-walk-Directed-Graph e w) = no-direct-successor-root-Directed-Tree T (_ , e)
Any node which has a walk to a base element is a proper node
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) where is-proper-node-walk-to-base-Directed-Tree : (x : node-Directed-Tree T) (b : base-Directed-Tree T) → walk-Directed-Tree T x (node-base-Directed-Tree T b) → is-proper-node-Directed-Tree T x is-proper-node-walk-to-base-Directed-Tree ._ b refl-walk-Directed-Graph = is-proper-node-base-Directed-Tree T b is-proper-node-walk-to-base-Directed-Tree x b (cons-walk-Directed-Graph e w) = is-proper-node-direct-successor-Directed-Tree T e
There are no edges between base elements
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) where no-edge-base-Directed-Tree : (a b : base-Directed-Tree T) → ¬ ( edge-Directed-Tree T ( node-base-Directed-Tree T a) ( node-base-Directed-Tree T b)) no-edge-base-Directed-Tree a b e = ex-falso ( is-not-one-two-ℕ ( ap ( length-walk-Directed-Graph (graph-Directed-Tree T)) ( eq-is-contr' ( unique-walk-to-root-Directed-Tree T ( node-base-Directed-Tree T a)) ( cons-walk-Directed-Tree T e ( unit-walk-Directed-Tree T (edge-base-Directed-Tree T b))) ( unit-walk-Directed-Tree T (edge-base-Directed-Tree T a)))))
For any node x
, the coproduct of is-root x
and the type of base elements b
equipped with a walk from x
to b
is contractible
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) where cons-cases-center-walk-to-base-Directed-Tree : {x y : node-Directed-Tree T} (e : edge-Directed-Tree T x y) → (w : walk-Directed-Tree T y (root-Directed-Tree T)) → Σ (base-Directed-Tree T) (walk-Directed-Tree T x ∘ pr1) cons-cases-center-walk-to-base-Directed-Tree e refl-walk-Directed-Graph = (_ , e) , refl-walk-Directed-Tree T cons-cases-center-walk-to-base-Directed-Tree e ( cons-walk-Directed-Graph f w) = tot ( λ u → cons-walk-Directed-Tree T e) ( cons-cases-center-walk-to-base-Directed-Tree f w) cases-center-walk-to-base-Directed-Tree : {x : node-Directed-Tree T} (w : walk-Directed-Tree T x (root-Directed-Tree T)) → is-root-Directed-Tree T x + Σ (base-Directed-Tree T) (walk-Directed-Tree T x ∘ pr1) cases-center-walk-to-base-Directed-Tree refl-walk-Directed-Graph = inl refl cases-center-walk-to-base-Directed-Tree (cons-walk-Directed-Graph e w) = inr (cons-cases-center-walk-to-base-Directed-Tree e w) center-walk-to-base-Directed-Tree : (x : node-Directed-Tree T) → is-root-Directed-Tree T x + Σ (base-Directed-Tree T) (walk-Directed-Tree T x ∘ pr1) center-walk-to-base-Directed-Tree x = cases-center-walk-to-base-Directed-Tree (walk-to-root-Directed-Tree T x) cons-cases-contraction-walk-to-base-Directed-Tree : {x y : node-Directed-Tree T} (e : edge-Directed-Tree T x y) → (w : walk-Directed-Tree T y (root-Directed-Tree T)) (u : Σ (base-Directed-Tree T) (walk-Directed-Tree T x ∘ pr1)) → cons-cases-center-walk-to-base-Directed-Tree e w = u cons-cases-contraction-walk-to-base-Directed-Tree e ( refl-walk-Directed-Graph) ( (z , f) , refl-walk-Directed-Graph) = ap ( λ i → ((z , i) , refl-walk-Directed-Graph)) ( eq-is-contr ( is-proof-irrelevant-edge-to-root-Directed-Tree T z e)) cons-cases-contraction-walk-to-base-Directed-Tree {x} e ( refl-walk-Directed-Graph) ( (z , f) , cons-walk-Directed-Graph {_} {y} g v) = ex-falso ( no-walk-to-base-root-Directed-Tree T ( z , f) ( tr ( λ u → walk-Directed-Tree T u z) ( ap pr1 ( eq-direct-successor-Directed-Tree T ( y , g) ( root-Directed-Tree T , e))) ( v))) cons-cases-contraction-walk-to-base-Directed-Tree e ( cons-walk-Directed-Graph {y} {z} g w) ( (u , f) , refl-walk-Directed-Graph) = ex-falso ( no-direct-successor-root-Directed-Tree T ( tr ( λ i → Σ (node-Directed-Tree T) (edge-Directed-Tree T i)) ( ap pr1 ( eq-direct-successor-Directed-Tree T ( y , e) ( root-Directed-Tree T , f))) ( z , g))) cons-cases-contraction-walk-to-base-Directed-Tree {x} {y} e ( cons-walk-Directed-Graph {y} {z} g w) ( (u , f) , cons-walk-Directed-Graph {_} {y'} e' v) = ( ap ( tot (λ u → cons-walk-Directed-Tree T e)) ( cons-cases-contraction-walk-to-base-Directed-Tree g w ( (u , f) , ( tr-walk-eq-direct-successor-Directed-Tree T ( y' , e') ( y , e) v)))) ∙ ( ap ( pair (u , f)) ( eq-tr-walk-eq-direct-successor-Directed-Tree T (y' , e') (y , e) v)) cases-contraction-walk-to-base-Directed-Tree : {x : node-Directed-Tree T} (w : walk-Directed-Tree T x (root-Directed-Tree T)) → (u : is-root-Directed-Tree T x + Σ (base-Directed-Tree T) (walk-Directed-Tree T x ∘ pr1)) → cases-center-walk-to-base-Directed-Tree w = u cases-contraction-walk-to-base-Directed-Tree ( refl-walk-Directed-Graph) ( inl p) = ap inl (eq-is-contr (is-contr-loop-space-root-Directed-Tree T)) cases-contraction-walk-to-base-Directed-Tree refl-walk-Directed-Graph ( inr (b , w)) = ex-falso (no-walk-to-base-root-Directed-Tree T b w) cases-contraction-walk-to-base-Directed-Tree ( cons-walk-Directed-Graph e w) ( inl refl) = ex-falso (no-direct-successor-root-Directed-Tree T (_ , e)) cases-contraction-walk-to-base-Directed-Tree ( cons-walk-Directed-Graph e w) (inr u) = ap inr (cons-cases-contraction-walk-to-base-Directed-Tree e w u) contraction-walk-to-base-Directed-Tree : (x : node-Directed-Tree T) ( w : is-root-Directed-Tree T x + Σ (base-Directed-Tree T) (walk-Directed-Tree T x ∘ pr1)) → center-walk-to-base-Directed-Tree x = w contraction-walk-to-base-Directed-Tree x = cases-contraction-walk-to-base-Directed-Tree ( walk-to-root-Directed-Tree T x) unique-walk-to-base-Directed-Tree : (x : node-Directed-Tree T) → is-contr ( is-root-Directed-Tree T x + Σ ( base-Directed-Tree T) ( walk-Directed-Tree T x ∘ node-base-Directed-Tree T)) unique-walk-to-base-Directed-Tree x = ( center-walk-to-base-Directed-Tree x , contraction-walk-to-base-Directed-Tree x) is-root-or-walk-to-base-Directed-Tree : (x : node-Directed-Tree T) → is-root-Directed-Tree T x + Σ ( base-Directed-Tree T) ( walk-Directed-Tree T x ∘ node-base-Directed-Tree T) is-root-or-walk-to-base-Directed-Tree x = center (unique-walk-to-base-Directed-Tree x) is-root-is-root-or-walk-to-base-root-Directed-Tree : is-root-or-walk-to-base-Directed-Tree (root-Directed-Tree T) = inl refl is-root-is-root-or-walk-to-base-root-Directed-Tree = eq-is-contr (unique-walk-to-base-Directed-Tree (root-Directed-Tree T)) unique-walk-to-base-is-proper-node-Directed-Tree : (x : node-Directed-Tree T) → is-proper-node-Directed-Tree T x → is-contr ( Σ ( base-Directed-Tree T) ( walk-Directed-Tree T x ∘ node-base-Directed-Tree T)) unique-walk-to-base-is-proper-node-Directed-Tree x f = is-contr-equiv' ( is-root-Directed-Tree T x + Σ ( base-Directed-Tree T) ( walk-Directed-Tree T x ∘ node-base-Directed-Tree T)) ( left-unit-law-coproduct-is-empty ( is-root-Directed-Tree T x) ( Σ ( base-Directed-Tree T) ( walk-Directed-Tree T x ∘ node-base-Directed-Tree T)) ( f)) ( unique-walk-to-base-Directed-Tree x) walk-to-base-is-proper-node-Directed-Tree : (x : node-Directed-Tree T) → is-proper-node-Directed-Tree T x → Σ ( base-Directed-Tree T) ( walk-Directed-Tree T x ∘ node-base-Directed-Tree T) walk-to-base-is-proper-node-Directed-Tree x H = center (unique-walk-to-base-is-proper-node-Directed-Tree x H) unique-walk-to-base-direct-successor-Directed-Tree : (x : node-Directed-Tree T) (u : Σ (node-Directed-Tree T) (edge-Directed-Tree T x)) → is-contr ( Σ ( base-Directed-Tree T) ( walk-Directed-Tree T x ∘ node-base-Directed-Tree T)) unique-walk-to-base-direct-successor-Directed-Tree x u = unique-walk-to-base-is-proper-node-Directed-Tree x ( is-proper-node-direct-successor-Directed-Tree T (pr2 u)) is-proof-irrelevant-walk-to-base-Directed-Tree : (x : node-Directed-Tree T) → is-proof-irrelevant ( Σ ( base-Directed-Tree T) ( λ b → walk-Directed-Tree T x (node-base-Directed-Tree T b))) is-proof-irrelevant-walk-to-base-Directed-Tree x (b , w) = unique-walk-to-base-is-proper-node-Directed-Tree x ( is-proper-node-walk-to-base-Directed-Tree T x b w) is-prop-walk-to-base-Directed-Tree : (x : node-Directed-Tree T) → is-prop ( Σ ( base-Directed-Tree T) ( λ b → walk-Directed-Tree T x (node-base-Directed-Tree T b))) is-prop-walk-to-base-Directed-Tree x = is-prop-is-proof-irrelevant ( is-proof-irrelevant-walk-to-base-Directed-Tree x) walk-to-base-Directed-Tree-Prop : node-Directed-Tree T → Prop (l1 ⊔ l2) pr1 (walk-to-base-Directed-Tree-Prop x) = Σ ( base-Directed-Tree T) ( λ b → walk-Directed-Tree T x (node-base-Directed-Tree T b)) pr2 (walk-to-base-Directed-Tree-Prop x) = is-prop-walk-to-base-Directed-Tree x
The type of proper nodes of a directed tree is equivalent to the type of nodes equipped with a base element b
and a walk to b
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) where compute-proper-node-Directed-Tree : proper-node-Directed-Tree T ≃ Σ ( base-Directed-Tree T) ( λ b → Σ ( node-Directed-Tree T) ( λ x → walk-Directed-Tree T x (node-base-Directed-Tree T b))) compute-proper-node-Directed-Tree = ( equiv-left-swap-Σ) ∘e ( equiv-tot ( λ x → equiv-iff ( is-proper-node-Directed-Tree-Prop T x) ( walk-to-base-Directed-Tree-Prop T x) ( walk-to-base-is-proper-node-Directed-Tree T x) ( λ (b , w) → is-proper-node-walk-to-base-Directed-Tree T x b w))) map-compute-proper-node-Directed-Tree : proper-node-Directed-Tree T → Σ ( base-Directed-Tree T) ( λ b → Σ ( node-Directed-Tree T) ( λ x → walk-Directed-Tree T x (node-base-Directed-Tree T b))) map-compute-proper-node-Directed-Tree = map-equiv compute-proper-node-Directed-Tree eq-compute-proper-node-Directed-Tree : {x : node-Directed-Tree T} (H : is-proper-node-Directed-Tree T x) (b : base-Directed-Tree T) (w : walk-Directed-Tree T x (node-base-Directed-Tree T b)) → map-compute-proper-node-Directed-Tree (x , H) = (b , x , w) eq-compute-proper-node-Directed-Tree {x} H b w = ap ( map-equiv equiv-left-swap-Σ) ( eq-pair-eq-fiber (eq-is-prop (is-prop-walk-to-base-Directed-Tree T x)))
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).