Cone diagrams of synthetic categories
Content created by Ivan Kobe.
Created on 2024-09-25.
Last modified on 2024-11-17.
{-# OPTIONS --guardedness #-} module synthetic-category-theory.cone-diagrams-synthetic-categories where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.globular-types open import synthetic-category-theory.cospans-synthetic-categories open import synthetic-category-theory.synthetic-categories
Idea
Consider a cospan S = D –g–> E <–f– C of synthetic categories and let T be a synthetic category. A cone diagram¶ over S with an apex T is a pair of functors p : T → C and r : T → D that assemble into a commutative square of the form:
T --p--> C
| |
r τ⇙ f
| |
v v
D --g--> E.
Definition
module _ {l : Level} where cone-diagram-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (S : cospan-Synthetic-Category-Theory κ C D E) (T : category-Synthetic-Category-Theory κ) → UU l cone-diagram-Synthetic-Category-Theory κ μ S T = Σ ( functor-Synthetic-Category-Theory κ T (right-source-cospan-Synthetic-Category-Theory κ S)) ( λ tr → Σ ( functor-Synthetic-Category-Theory κ T (left-source-cospan-Synthetic-Category-Theory κ S)) ( λ tl → isomorphism-Synthetic-Category-Theory κ ( comp-functor-Synthetic-Category-Theory μ ( right-functor-cospan-Synthetic-Category-Theory κ S) tr) ( comp-functor-Synthetic-Category-Theory μ ( left-functor-cospan-Synthetic-Category-Theory κ S) tl)))
The components of a cospan of synthetic categories
apex-cone-diagram-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} → cone-diagram-Synthetic-Category-Theory κ μ S T → category-Synthetic-Category-Theory κ apex-cone-diagram-Synthetic-Category-Theory κ μ {T = T} c = T left-functor-cone-diagram-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} (c : cone-diagram-Synthetic-Category-Theory κ μ S T) → functor-Synthetic-Category-Theory κ ( apex-cone-diagram-Synthetic-Category-Theory κ μ c) ( left-source-cospan-Synthetic-Category-Theory κ S) left-functor-cone-diagram-Synthetic-Category-Theory κ μ c = pr1 (pr2 c) right-functor-cone-diagram-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} (c : cone-diagram-Synthetic-Category-Theory κ μ S T) → functor-Synthetic-Category-Theory κ ( apex-cone-diagram-Synthetic-Category-Theory κ μ c) ( right-source-cospan-Synthetic-Category-Theory κ S) right-functor-cone-diagram-Synthetic-Category-Theory κ μ c = pr1 c iso-cone-diagram-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} (c : cone-diagram-Synthetic-Category-Theory κ μ S T) → isomorphism-Synthetic-Category-Theory κ ( comp-functor-Synthetic-Category-Theory μ ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) ( comp-functor-Synthetic-Category-Theory μ ( left-functor-cospan-Synthetic-Category-Theory κ S) ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) iso-cone-diagram-Synthetic-Category-Theory κ μ c = pr2 (pr2 c)
Isomorphisms of cone diagrams
An isomorphism between cone diagrams c = (tl, tr, τ) and c’ = (tl’, tr’, τ’) is a pair of natural isomorphisms φl : tl ≅ tl’ and φr : tr ≅ tr’ together with an isomorphism of natural isomorphisms H : τ ≅ τ’.
iso-of-cone-diagrams-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (Χ : horizontal-composition-Synthetic-Category-Theory κ μ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} → cone-diagram-Synthetic-Category-Theory κ μ S T → cone-diagram-Synthetic-Category-Theory κ μ S T → UU l iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ {S = S} c c' = Σ ( isomorphism-Synthetic-Category-Theory κ ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c')) ( λ φr → Σ ( isomorphism-Synthetic-Category-Theory κ ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c')) ( λ φl → commuting-square-isomorphisms-Synthetic-Category-Theory κ μ ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( left-functor-cospan-Synthetic-Category-Theory κ S)) ( φl)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S)) ( φr)) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c')))
The components of an isomorphism of cone diagrams
right-functor-iso-of-cone-diagrams-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (Χ : horizontal-composition-Synthetic-Category-Theory κ μ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} {c c' : cone-diagram-Synthetic-Category-Theory κ μ S T} → (iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ c c') → isomorphism-Synthetic-Category-Theory κ ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c') right-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ = pr1 left-functor-iso-of-cone-diagrams-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (Χ : horizontal-composition-Synthetic-Category-Theory κ μ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} {c c' : cone-diagram-Synthetic-Category-Theory κ μ S T} → (iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ c c') → isomorphism-Synthetic-Category-Theory κ ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c') left-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ϕ = pr1 (pr2 ϕ) isomorphism-iso-of-cone-diagrams-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (Χ : horizontal-composition-Synthetic-Category-Theory κ μ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} {c c' : cone-diagram-Synthetic-Category-Theory κ μ S T} → (ϕ : iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ c c') → commuting-square-isomorphisms-Synthetic-Category-Theory κ μ ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( left-functor-cospan-Synthetic-Category-Theory κ S)) ( left-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ϕ)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S)) ( right-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ϕ)) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c') isomorphism-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ϕ = pr2 (pr2 ϕ)
Isomorphisms of isomorphisms of cone diagrams
If ϕ = (φl, φr, H) and Ψ = (ψl, ψr, K) are two isomorphisms between cone diagrams c and c’, an isomorphism between them is a pair of isomorphisms φl ≅ ψl and φr ≅ ψr under which H becomes isomorphic to K.
iso-of-isos-of-cone-diagrams-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (ν : inverse-Synthetic-Category-Theory κ μ ι) (Χ : horizontal-composition-Synthetic-Category-Theory κ μ) (Μ : preserves-isomorphism-horizontal-composition-Synthetic-Category-Theory κ ι μ Χ) {S : cospan-Synthetic-Category-Theory κ C D E} {T : category-Synthetic-Category-Theory κ} {c c' : cone-diagram-Synthetic-Category-Theory κ μ S T} (ϕ ψ : iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ c c') → UU l iso-of-isos-of-cone-diagrams-Synthetic-Category-Theory κ μ ι ν Χ Μ {S = S} {c = c} {c' = c'} ϕ ψ = Σ ( isomorphism-Synthetic-Category-Theory ( functor-globular-type-Synthetic-Category-Theory κ ( _) ( right-source-cospan-Synthetic-Category-Theory κ S)) ( right-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ϕ) ( right-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ψ)) ( λ α → Σ ( isomorphism-Synthetic-Category-Theory ( functor-globular-type-Synthetic-Category-Theory κ ( _) ( left-source-cospan-Synthetic-Category-Theory κ S)) ( left-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ϕ) ( left-functor-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ψ)) ( λ β → isomorphism-Synthetic-Category-Theory ( functor-globular-type-Synthetic-Category-Theory ( functor-globular-type-Synthetic-Category-Theory κ ( _) ( target-cospan-Synthetic-Category-Theory κ S)) ( comp-functor-Synthetic-Category-Theory μ ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) ( comp-functor-Synthetic-Category-Theory μ ( left-functor-cospan-Synthetic-Category-Theory κ S) ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c'))) ( comp-iso-Synthetic-Category-Theory ( composition-isomorphism-Synthetic-Category-Theory μ) ( horizontal-comp-iso-Synthetic-Category-Theory ( horizontal-composition-isomorphism-Synthetic-Category-Theory Χ) ( id-iso-Synthetic-Category-Theory ( identity-isomorphism-Synthetic-Category-Theory ι) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c')) ( preserves-isomorphism-horizontal-comp-iso-Synthetic-Category-Theory ( Μ) ( α) ( id-iso-Synthetic-Category-Theory ( identity-isomorphism-Synthetic-Category-Theory ι) ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S))))) ( comp-iso-Synthetic-Category-Theory ( composition-isomorphism-Synthetic-Category-Theory μ) ( isomorphism-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ϕ) ( horizontal-comp-iso-Synthetic-Category-Theory ( horizontal-composition-isomorphism-Synthetic-Category-Theory Χ) ( preserves-isomorphism-horizontal-comp-iso-Synthetic-Category-Theory ( Μ) ( inv-iso-Synthetic-Category-Theory ( inverse-isomorphism-Synthetic-Category-Theory ν) ( β)) ( id-iso-Synthetic-Category-Theory ( identity-isomorphism-Synthetic-Category-Theory ι) ( id-iso-Synthetic-Category-Theory ι ( left-functor-cospan-Synthetic-Category-Theory κ S)))) ( id-iso-Synthetic-Category-Theory ( identity-isomorphism-Synthetic-Category-Theory ι) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c))))) ( isomorphism-iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ψ)))
Induced cones
Given a cone c = (tl, tr, τ) over S with apex T and a functor s : R → T we construct an induced cone over S with apex R, defined as s*(c) = (tl∘s, tr∘s, τ*idₛ).
module _ {l : Level} where induced-cone-diagram-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (ν : inverse-Synthetic-Category-Theory κ μ ι) (Χ : horizontal-composition-Synthetic-Category-Theory κ μ) (Α : associative-composition-Synthetic-Category-Theory κ μ) (S : cospan-Synthetic-Category-Theory κ C D E) {T : category-Synthetic-Category-Theory κ} (c : cone-diagram-Synthetic-Category-Theory κ μ S T) {R : category-Synthetic-Category-Theory κ} (s : functor-Synthetic-Category-Theory κ R T) → cone-diagram-Synthetic-Category-Theory κ μ S R induced-cone-diagram-Synthetic-Category-Theory κ μ ι ν Χ Α S c s = comp-functor-Synthetic-Category-Theory μ ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( s) , comp-functor-Synthetic-Category-Theory μ ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( s) , comp-iso-Synthetic-Category-Theory μ ( associative-comp-functor-Synthetic-Category-Theory Α ( left-functor-cospan-Synthetic-Category-Theory κ S) ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( s)) ( comp-iso-Synthetic-Category-Theory μ ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( id-iso-Synthetic-Category-Theory ι s)) ( inv-iso-Synthetic-Category-Theory ν ( associative-comp-functor-Synthetic-Category-Theory Α ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( s))))
Induced isomorphisms of cone diagrams
Given a cone over S with apex T and two functors s, t : R → T together with an isomorphism s ≅ t, we construct an isomorphism of cone diagrams between s*(c) and t*(c).
module _ {l : Level} where induced-iso-cone-diagram-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D E : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (ν : inverse-Synthetic-Category-Theory κ μ ι) (Α : associative-composition-Synthetic-Category-Theory κ μ) (Χ : horizontal-composition-Synthetic-Category-Theory κ μ) (Λ : left-unit-law-composition-Synthetic-Category-Theory κ ι μ) (Ρ : right-unit-law-composition-Synthetic-Category-Theory κ ι μ) (Ξ : preserves-associativity-composition-horizontal-composition-Synthetic-Category-Theory κ μ Α Χ) (I : interchange-composition-Synthetic-Category-Theory κ μ Χ) (Μ : preserves-isomorphism-horizontal-composition-Synthetic-Category-Theory κ ι μ Χ) (N : preserves-identity-horizontal-composition-Synthetic-Category-Theory κ ι μ Χ) (S : cospan-Synthetic-Category-Theory κ C D E) {T : category-Synthetic-Category-Theory κ} (c : cone-diagram-Synthetic-Category-Theory κ μ S T) {R : category-Synthetic-Category-Theory κ} (s t : functor-Synthetic-Category-Theory κ R T) → isomorphism-Synthetic-Category-Theory κ s t → iso-of-cone-diagrams-Synthetic-Category-Theory κ μ ι Χ ( induced-cone-diagram-Synthetic-Category-Theory κ μ ι ν Χ Α S c s) ( induced-cone-diagram-Synthetic-Category-Theory κ μ ι ν Χ Α S c t) induced-iso-cone-diagram-Synthetic-Category-Theory κ μ ι ν Α Χ Λ Ρ Ξ I M N S c s t α = horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) α , horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) α , pasting-commuting-squares-isomorphisms-Synthetic-Category-Theory κ μ ι ν Α Χ ( comp-iso-Synthetic-Category-Theory μ ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( id-iso-Synthetic-Category-Theory ι ( s))) ( inv-iso-Synthetic-Category-Theory ν ( associative-comp-functor-Synthetic-Category-Theory Α ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( s)))) ( associative-comp-functor-Synthetic-Category-Theory Α ( left-functor-cospan-Synthetic-Category-Theory κ S) ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( s)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( left-functor-cospan-Synthetic-Category-Theory κ S)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) ( α))) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) ( α))) ( comp-iso-Synthetic-Category-Theory μ ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( id-iso-Synthetic-Category-Theory ι t)) ( inv-iso-Synthetic-Category-Theory ν ( associative-comp-functor-Synthetic-Category-Theory Α ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( t)))) ( associative-comp-functor-Synthetic-Category-Theory Α ( left-functor-cospan-Synthetic-Category-Theory κ S) ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( t)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι (left-functor-cospan-Synthetic-Category-Theory κ S)) ( id-iso-Synthetic-Category-Theory ι ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c))) ( α)) ( pasting-commuting-squares-isomorphisms-Synthetic-Category-Theory κ μ ι ν Α Χ ( inv-iso-Synthetic-Category-Theory ν ( associative-comp-functor-Synthetic-Category-Theory Α ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( s))) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( id-iso-Synthetic-Category-Theory ι s)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( left-functor-cospan-Synthetic-Category-Theory κ S)) ( id-iso-Synthetic-Category-Theory ι ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c))) ( α)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) ( α))) ( inv-iso-Synthetic-Category-Theory ν ( associative-comp-functor-Synthetic-Category-Theory Α ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( t))) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( id-iso-Synthetic-Category-Theory ι t)) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S)) ( id-iso-Synthetic-Category-Theory ι ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c))) ( α)) ( preserves-associativity-comp-functor-horizontal-comp-iso-inv-Synthetic-Category-Theory κ μ ι ν Α Χ Λ Ρ Ξ ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cospan-Synthetic-Category-Theory κ S) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c) s t ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S)) ( id-iso-Synthetic-Category-Theory ι ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) ( α)) ( comp-iso-Synthetic-Category-Theory ( composition-isomorphism-Synthetic-Category-Theory μ) ( interchange-comp-functor-Synthetic-Category-Theory I ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( right-functor-cospan-Synthetic-Category-Theory κ S)) ( id-iso-Synthetic-Category-Theory ι ( right-functor-cone-diagram-Synthetic-Category-Theory κ μ c))) ( id-iso-Synthetic-Category-Theory ι t) ( α)) ( comp-iso-Synthetic-Category-Theory ( composition-isomorphism-Synthetic-Category-Theory μ) ( preserves-isomorphism-horizontal-comp-iso-Synthetic-Category-Theory ( M) ( inv-iso-Synthetic-Category-Theory ( inverse-isomorphism-Synthetic-Category-Theory ν) ( left-unit-law-comp-functor-Synthetic-Category-Theory ( left-unit-law-composition-isomorphism-Synthetic-Category-Theory Λ) ( α))) ( comp-iso-Synthetic-Category-Theory ( composition-isomorphism-Synthetic-Category-Theory μ) ( horizontal-comp-iso-Synthetic-Category-Theory ( horizontal-composition-isomorphism-Synthetic-Category-Theory Χ) ( id-iso-Synthetic-Category-Theory ( identity-isomorphism-Synthetic-Category-Theory ι) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c)) ( inv-iso-Synthetic-Category-Theory ( inverse-isomorphism-Synthetic-Category-Theory ν) ( preserves-identity-horizontal-comp-iso-Synthetic-Category-Theory N))) ( inv-iso-Synthetic-Category-Theory ( inverse-isomorphism-Synthetic-Category-Theory ν) ( right-unit-law-comp-functor-Synthetic-Category-Theory ( right-unit-law-composition-isomorphism-Synthetic-Category-Theory Ρ) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c))))) ( comp-iso-Synthetic-Category-Theory ( composition-isomorphism-Synthetic-Category-Theory μ) ( preserves-isomorphism-horizontal-comp-iso-Synthetic-Category-Theory ( M) ( right-unit-law-comp-functor-Synthetic-Category-Theory ( right-unit-law-composition-isomorphism-Synthetic-Category-Theory Ρ) ( α)) ( comp-iso-Synthetic-Category-Theory ( composition-isomorphism-Synthetic-Category-Theory μ) ( left-unit-law-comp-functor-Synthetic-Category-Theory ( left-unit-law-composition-isomorphism-Synthetic-Category-Theory Λ) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c)) ( horizontal-comp-iso-Synthetic-Category-Theory ( horizontal-composition-isomorphism-Synthetic-Category-Theory Χ) ( preserves-identity-horizontal-comp-iso-Synthetic-Category-Theory N) ( id-iso-Synthetic-Category-Theory ( identity-isomorphism-Synthetic-Category-Theory ι) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c))))) ( inv-iso-Synthetic-Category-Theory ( inverse-isomorphism-Synthetic-Category-Theory ν) ( interchange-comp-functor-Synthetic-Category-Theory I ( horizontal-comp-iso-Synthetic-Category-Theory Χ ( id-iso-Synthetic-Category-Theory ι ( left-functor-cospan-Synthetic-Category-Theory κ S)) ( id-iso-Synthetic-Category-Theory ι ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c))) ( iso-cone-diagram-Synthetic-Category-Theory κ μ c) ( α) ( id-iso-Synthetic-Category-Theory ι s))))))) ( preserves-associativity-comp-functor-horizontal-comp-iso-Synthetic-Category-Theory ( Ξ) ( id-iso-Synthetic-Category-Theory ι ( left-functor-cospan-Synthetic-Category-Theory κ S)) ( id-iso-Synthetic-Category-Theory ι ( left-functor-cone-diagram-Synthetic-Category-Theory κ μ c)) ( α))
Recent changes
- 2024-11-17. Egbert Rijke. chore: Moving files about globular types to a new namespace (#1223).
- 2024-09-25. Ivan Kobe. Pullbacks of synthetic categories (#1183).