Cores of categories
Content created by Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2023-11-09.
module category-theory.cores-categories where
Imports
open import category-theory.categories open import category-theory.cores-precategories open import category-theory.groupoids open import category-theory.isomorphisms-in-categories open import category-theory.precategories open import category-theory.pregroupoids open import category-theory.subcategories open import category-theory.wide-subcategories open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.universe-levels
Idea
The core of a category C
is the maximal
subgroupoid of it. It consists of all objects and
isomorphisms in C
.
Definitions
The core wide subcategory
module _ {l1 l2 : Level} (C : Category l1 l2) where core-wide-subcategory-Category : Wide-Subcategory l2 C core-wide-subcategory-Category = core-wide-subprecategory-Precategory (precategory-Category C)
The core subcategory
module _ {l1 l2 : Level} (C : Category l1 l2) where core-subcategory-Category : Subcategory lzero l2 C core-subcategory-Category = core-subprecategory-Precategory (precategory-Category C) is-wide-core-Category : is-wide-Subcategory C core-subcategory-Category is-wide-core-Category = is-wide-core-Precategory (precategory-Category C)
The core precategory
core-precategory-Category : {l1 l2 : Level} (C : Category l1 l2) → Precategory l1 l2 core-precategory-Category C = core-precategory-Precategory (precategory-Category C)
The core category
core-category-Category : {l1 l2 : Level} (C : Category l1 l2) → Category l1 l2 pr1 (core-category-Category C) = core-precategory-Category C pr2 (core-category-Category C) = is-category-core-is-category-Precategory ( precategory-Category C) ( is-category-Category C)
The core pregroupoid
module _ {l1 l2 : Level} (C : Category l1 l2) where is-pregroupoid-core-Category : is-pregroupoid-Precategory (core-precategory-Category C) is-pregroupoid-core-Category = is-pregroupoid-core-Precategory (precategory-Category C) core-pregroupoid-Category : Pregroupoid l1 l2 core-pregroupoid-Category = core-pregroupoid-Precategory (precategory-Category C)
The core groupoid
module _ {l1 l2 : Level} (C : Category l1 l2) where is-groupoid-core-Category : is-groupoid-Category (core-category-Category C) is-groupoid-core-Category = is-pregroupoid-core-Category C core-groupoid-Category : Groupoid l1 l2 pr1 core-groupoid-Category = core-category-Category C pr2 core-groupoid-Category = is-groupoid-core-Category
Properties
Computing isomorphisms in the core
module _ {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} where compute-iso-core-Category : iso-Category C x y ≃ iso-Category (core-category-Category C) x y compute-iso-core-Category = compute-iso-core-Precategory (precategory-Category C) inv-compute-iso-core-Category : iso-Category (core-category-Category C) x y ≃ iso-Category C x y inv-compute-iso-core-Category = inv-compute-iso-core-Precategory (precategory-Category C)
See also
External links
- The core of a category at 1lab
- core groupoid at Lab
Recent changes
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).