Multivariable relations
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-09-09.
Last modified on 2023-06-08.
module foundation.multivariable-relations where
Imports
open import elementary-number-theory.natural-numbers open import foundation.multivariable-correspondences open import foundation.universe-levels open import foundation-core.subtypes open import univalent-combinatorics.standard-finite-types
Idea
A n
-ary relation on a type A
is a subtype of Fin n → A
.
Definition
multivariable-relation : {l1 : Level} (l2 : Level) (n : ℕ) (A : Fin n → UU l1) → UU (l1 ⊔ lsuc l2) multivariable-relation l2 n A = subtype l2 ((i : Fin n) → A i) module _ {l1 l2 : Level} {n : ℕ} {A : Fin n → UU l1} (R : multivariable-relation l2 n A) where multivariable-correspondence-multivariable-relation : multivariable-correspondence l2 n A multivariable-correspondence-multivariable-relation = is-in-subtype R
Recent changes
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).