Homomorphisms of large locales
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-05-12.
Last modified on 2023-11-24.
module order-theory.homomorphisms-large-locales where
Imports
open import foundation.identity-types open import foundation.universe-levels open import order-theory.homomorphisms-large-frames open import order-theory.large-locales
Idea
A homomorphism of large locales from K
to L
is a
frame homomorphism from L
to
K
.
Definition
module _ {αK αL : Level → Level} {βK βL : Level → Level → Level} {γ : Level} (K : Large-Locale αK βK γ) (L : Large-Locale αL βL γ) where hom-Large-Locale : UUω hom-Large-Locale = hom-Large-Frame L K module _ (f : hom-Large-Locale) where map-hom-Large-Locale : {l1 : Level} → type-Large-Locale L l1 → type-Large-Locale K l1 map-hom-Large-Locale = map-hom-Large-Frame L K f preserves-order-hom-Large-Locale : {l1 l2 : Level} (x : type-Large-Locale L l1) (y : type-Large-Locale L l2) → leq-Large-Locale L x y → leq-Large-Locale K (map-hom-Large-Locale x) (map-hom-Large-Locale y) preserves-order-hom-Large-Locale = preserves-order-hom-Large-Frame L K f preserves-meets-hom-Large-Locale : {l1 l2 : Level} (x : type-Large-Locale L l1) (y : type-Large-Locale L l2) → map-hom-Large-Locale (meet-Large-Locale L x y) = meet-Large-Locale K (map-hom-Large-Locale x) (map-hom-Large-Locale y) preserves-meets-hom-Large-Locale = preserves-meets-hom-Large-Frame L K f preserves-top-hom-Large-Locale : map-hom-Large-Locale (top-Large-Locale L) = top-Large-Locale K preserves-top-hom-Large-Locale = preserves-top-hom-Large-Frame L K f preserves-sup-hom-Large-Locale : {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Locale L l2) → map-hom-Large-Locale (sup-Large-Locale L x) = sup-Large-Locale K (λ i → map-hom-Large-Locale (x i)) preserves-sup-hom-Large-Locale = preserves-sup-hom-Large-Frame f
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).
- 2023-05-12. Egbert Rijke. Subframes and quotient locales via nuclei (#613).