Compact metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-31.
module metric-spaces.compact-metric-spaces where
Imports
open import foundation.conjunction open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.complete-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.totally-bounded-metric-spaces
Idea
A metric space is compact¶ if it is totally bounded and complete.
Definition
module _ {l1 l2 : Level} (l3 : Level) (X : Metric-Space l1 l2) where is-compact-prop-Metric-Space : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-compact-prop-Metric-Space = is-totally-bounded-prop-Metric-Space l3 X ∧ is-complete-prop-Metric-Space X is-compact-Metric-Space : UU (l1 ⊔ l2 ⊔ lsuc l3) is-compact-Metric-Space = type-Prop is-compact-prop-Metric-Space Compact-Metric-Space : (l1 l2 l3 : Level) → UU (lsuc l1 ⊔ lsuc l2 ⊔ lsuc l3) Compact-Metric-Space l1 l2 l3 = type-subtype (is-compact-prop-Metric-Space {l1} {l2} l3)
External links
- Compact space at Wikidata
Recent changes
- 2025-08-31. Louis Wasserman. The image of a totally bounded metric space under a uniformly continuous function is totally bounded (#1513).
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).