Limits of Cauchy approximations in metric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-08-18.
Last modified on 2025-12-25.
module metric-spaces.limits-of-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
A Cauchy approximation
f : ℚ⁺ → A in a metric space A has a
limit¶
x : A if f ε is near x for small ε : ℚ⁺. More precisely, f has a limit
if f ε is in a
ε + δ-neighborhood of x
for all
positive rationals ε
and δ.
These are limits in the underlying pseudometric space but, because metric spaces are extensional, all limits of a Cauchy approximation in a metric space are equal.
Definitions
The property of having a limit in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : cauchy-approximation-Metric-Space A) where is-limit-cauchy-approximation-prop-Metric-Space : type-Metric-Space A → Prop l2 is-limit-cauchy-approximation-prop-Metric-Space = is-limit-cauchy-approximation-prop-Pseudometric-Space ( pseudometric-Metric-Space A) ( f) is-limit-cauchy-approximation-Metric-Space : type-Metric-Space A → UU l2 is-limit-cauchy-approximation-Metric-Space = type-Prop ∘ is-limit-cauchy-approximation-prop-Metric-Space
Properties
Saturation of the limit
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : cauchy-approximation-Metric-Space A) (x : type-Metric-Space A) where abstract saturated-is-limit-cauchy-approximation-Metric-Space : is-limit-cauchy-approximation-Metric-Space A f x → (ε : ℚ⁺) → neighborhood-Metric-Space A ε ( map-cauchy-approximation-Metric-Space A f ε) ( x) saturated-is-limit-cauchy-approximation-Metric-Space = saturated-is-limit-cauchy-approximation-Pseudometric-Space ( pseudometric-Metric-Space A) ( f) ( x)
Limits in a metric space are unique
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : cauchy-approximation-Metric-Space A) (x y : type-Metric-Space A) where all-sim-is-limit-cauchy-approximation-Metric-Space : is-limit-cauchy-approximation-Metric-Space A f x → is-limit-cauchy-approximation-Metric-Space A f y → sim-Metric-Space A x y all-sim-is-limit-cauchy-approximation-Metric-Space = all-sim-is-limit-cauchy-approximation-Pseudometric-Space ( pseudometric-Metric-Space A) ( f) ( x) ( y) all-eq-is-limit-cauchy-approximation-Metric-Space : is-limit-cauchy-approximation-Metric-Space A f x → is-limit-cauchy-approximation-Metric-Space A f y → x = y all-eq-is-limit-cauchy-approximation-Metric-Space lim-x lim-y = eq-sim-Metric-Space ( A) ( x) ( y) ( all-sim-is-limit-cauchy-approximation-Metric-Space lim-x lim-y)
The value of a constant Cauchy approximation is its limit
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (x : type-Metric-Space A) where is-limit-const-cauchy-approximation-Metric-Space : is-limit-cauchy-approximation-Metric-Space ( A) ( const-cauchy-approximation-Metric-Space A x) ( x) is-limit-const-cauchy-approximation-Metric-Space = is-limit-const-cauchy-approximation-Pseudometric-Space ( pseudometric-Metric-Space A) ( x)
Convergent Cauchy approximations are similar to constant Cauchy approximations in the Cauchy pseudocompletion
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : cauchy-approximation-Metric-Space M) (x : type-Metric-Space M) where abstract sim-const-is-limit-cauchy-approximation-Metric-Space : is-limit-cauchy-approximation-Metric-Space M u x → sim-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( u) ( const-cauchy-approximation-Metric-Space M x) sim-const-is-limit-cauchy-approximation-Metric-Space H d α β = monotonic-neighborhood-Metric-Space ( M) ( map-cauchy-approximation-Metric-Space M u α) ( x) ( α +ℚ⁺ β) ( α +ℚ⁺ β +ℚ⁺ d) ( le-left-add-ℚ⁺ (α +ℚ⁺ β) d) ( H α β) is-limit-sim-const-cauchy-approximation-Metric-Space : sim-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( u) ( const-cauchy-approximation-Metric-Space M x) → is-limit-cauchy-approximation-Metric-Space M u x is-limit-sim-const-cauchy-approximation-Metric-Space H α β = saturated-neighborhood-Metric-Space ( M) ( α +ℚ⁺ β) ( map-cauchy-approximation-Metric-Space M u α) ( x) ( λ d → H d α β)
See also
- Convergent cauchy approximations are Cauchy approximations with a limit.
References
Our definition of limit of Cauchy approximation follows Definition 11.2.10 of [UF13].
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2025-12-25. malarbol. Refactor function actions on cauchy approximations (#1738).
- 2025-11-15. Louis Wasserman. Every point in a proper closed interval in the real numbers is an accumulation point (#1679).
- 2025-10-21. malarbol. Lemmas metric spaces (#1618).
- 2025-09-02. Louis Wasserman. Opacify real numbers (#1521).
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).