Limits of Cauchy approximations in metric spaces

Content created by Louis Wasserman and malarbol.

Created on 2025-08-18.
Last modified on 2025-08-18.

module metric-spaces.limits-of-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces
open import metric-spaces.metric-spaces

Idea

A Cauchy approximation f : ℚ⁺ → A in a metric space A has a limit x : A if f ε is near x for small ε : ℚ⁺. More precisely, f has a limit if f ε is in a ε + δ-neighborhood of x for all positive rationals ε and δ.

These are limits in the underlying pseudometric space but, because metric spaces are extensional, all limits of a Cauchy approximation in a metric space are equal.

Definitions

The property of having a limit in a metric space

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  (f : cauchy-approximation-Metric-Space A)
  where

  is-limit-cauchy-approximation-prop-Metric-Space :
    type-Metric-Space A  Prop l2
  is-limit-cauchy-approximation-prop-Metric-Space =
    is-limit-cauchy-approximation-prop-Pseudometric-Space
      ( pseudometric-Metric-Space A)
      ( f)

  is-limit-cauchy-approximation-Metric-Space :
    type-Metric-Space A  UU l2
  is-limit-cauchy-approximation-Metric-Space =
    type-Prop  is-limit-cauchy-approximation-prop-Metric-Space

Properties

Limits in a metric space are unique

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  (f : cauchy-approximation-Metric-Space A)
  (x y : type-Metric-Space A)
  where

  all-sim-is-limit-cauchy-approximation-Metric-Space :
    is-limit-cauchy-approximation-Metric-Space A f x 
    is-limit-cauchy-approximation-Metric-Space A f y 
    sim-Metric-Space A x y
  all-sim-is-limit-cauchy-approximation-Metric-Space =
    all-sim-is-limit-cauchy-approximation-Pseudometric-Space
      ( pseudometric-Metric-Space A)
      ( f)
      ( x)
      ( y)

  all-eq-is-limit-cauchy-approximation-Metric-Space :
    is-limit-cauchy-approximation-Metric-Space A f x 
    is-limit-cauchy-approximation-Metric-Space A f y 
    x  y
  all-eq-is-limit-cauchy-approximation-Metric-Space lim-x lim-y =
    eq-sim-Metric-Space
      ( A)
      ( x)
      ( y)
      ( all-sim-is-limit-cauchy-approximation-Metric-Space lim-x lim-y)

See also

References

Our definition of limit of Cauchy approximation follows Definition 11.2.10 of [UF13].

[UF13]
The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.

Recent changes