Limits of Cauchy approximations in metric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-08-18.
Last modified on 2025-08-18.
module metric-spaces.limits-of-cauchy-approximations-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces open import metric-spaces.metric-spaces
Idea
A Cauchy approximation
f : ℚ⁺ → A
in a metric space A
has a
limit¶
x : A
if f ε
is near x
for small ε : ℚ⁺
. More precisely, f
has a limit
if f ε
is in a
ε + δ
-neighborhood of x
for all
positive rationals ε
and δ
.
These are limits in the underlying pseudometric space but, because metric spaces are extensional, all limits of a Cauchy approximation in a metric space are equal.
Definitions
The property of having a limit in a metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : cauchy-approximation-Metric-Space A) where is-limit-cauchy-approximation-prop-Metric-Space : type-Metric-Space A → Prop l2 is-limit-cauchy-approximation-prop-Metric-Space = is-limit-cauchy-approximation-prop-Pseudometric-Space ( pseudometric-Metric-Space A) ( f) is-limit-cauchy-approximation-Metric-Space : type-Metric-Space A → UU l2 is-limit-cauchy-approximation-Metric-Space = type-Prop ∘ is-limit-cauchy-approximation-prop-Metric-Space
Properties
Limits in a metric space are unique
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) (f : cauchy-approximation-Metric-Space A) (x y : type-Metric-Space A) where all-sim-is-limit-cauchy-approximation-Metric-Space : is-limit-cauchy-approximation-Metric-Space A f x → is-limit-cauchy-approximation-Metric-Space A f y → sim-Metric-Space A x y all-sim-is-limit-cauchy-approximation-Metric-Space = all-sim-is-limit-cauchy-approximation-Pseudometric-Space ( pseudometric-Metric-Space A) ( f) ( x) ( y) all-eq-is-limit-cauchy-approximation-Metric-Space : is-limit-cauchy-approximation-Metric-Space A f x → is-limit-cauchy-approximation-Metric-Space A f y → x = y all-eq-is-limit-cauchy-approximation-Metric-Space lim-x lim-y = eq-sim-Metric-Space ( A) ( x) ( y) ( all-sim-is-limit-cauchy-approximation-Metric-Space lim-x lim-y)
See also
- Convergent cauchy approximations are Cauchy approximations with a limit.
References
Our definition of limit of Cauchy approximation follows Definition 11.2.10 of [UF13].
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).