The category of abelian groups

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-10-17.
Last modified on 2023-11-24.

module group-theory.category-of-abelian-groups where
open import category-theory.categories
open import category-theory.full-large-subcategories
open import category-theory.functors-large-categories
open import category-theory.functors-large-precategories
open import category-theory.large-categories
open import category-theory.large-precategories
open import category-theory.precategories

open import foundation.function-types
open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.category-of-groups


The category of abelian groups is the full large subcategory of the category of groups consisting of groups of which the group operation is commutative.


The large category of abelian groups

Ab-Large-Category : Large-Category lsuc _⊔_
Ab-Large-Category =
    ( Group-Large-Category)
    ( is-abelian-prop-Group)

The large precategory of abelian groups

Ab-Large-Precategory : Large-Precategory lsuc _⊔_
Ab-Large-Precategory =
  large-precategory-Large-Category Ab-Large-Category

The category of abelian groups of a given universe level

Ab-Category : (l : Level)  Category (lsuc l) l
Ab-Category = category-Large-Category Ab-Large-Category

The precategory of abelian groups of a given universe level

Ab-Precategory : (l : Level)  Precategory (lsuc l) l
Ab-Precategory = precategory-Large-Category Ab-Large-Category

The forgetful functor from abelian groups to groups

forgetful-functor-Ab :
  functor-Large-Category  l  l) Ab-Large-Category Group-Large-Category
forgetful-functor-Ab =
    ( Group-Large-Category)
    ( is-abelian-prop-Group)

Recent changes