Coherently idempotent maps
Content created by Fredrik Bakke.
Created on 2024-08-21.
Last modified on 2024-08-21.
module foundation.coherently-idempotent-maps where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.homotopy-algebra open import foundation.quasicoherently-idempotent-maps open import foundation.split-idempotent-maps open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.propositions open import foundation-core.retractions open import foundation-core.sets
Idea
A
coherently idempotent map¶
is an idempotent map f : A → A
equipped with an infinitely coherent hierarchy of
homotopies making it a “homotopy-correct”
definition of an idempotent map in Homotopy Type Theory.
The infinite coherence condition is given by taking the sequential limit of iterated application of the splitting construction on quasicoherently idempotent maps given in [Shu17]:
is-coherently-idempotent f :=
Σ (a : ℕ → is-quasicoherently-idempotent f), (Π (n : ℕ), split(aₙ₊₁) ~ aₙ)
Terminology. Our definition of a coherently idempotent map corresponds to the definition of a (fully coherent) idempotent map in and . Our definition of an idempotent map corresponds in their terminology to a pre-idempotent map.
Definitions
The structure on a map of coherent idempotence
is-coherently-idempotent : {l : Level} {A : UU l} → (A → A) → UU l is-coherently-idempotent f = Σ ( ℕ → is-quasicoherently-idempotent f) ( λ a → (n : ℕ) → htpy-is-quasicoherently-idempotent ( is-quasicoherently-idempotent-is-split-idempotent ( is-split-idempotent-is-quasicoherently-idempotent ( a (succ-ℕ n)))) ( a n))
See also
References
- [Shu17]
- Michael Shulman. Idempotents in intensional type theory. Logical Methods in Computer Science, 12:1–24, 04 2017. arXiv:1507.03634, doi:10.2168/LMCS-12(3:9)2016.
- [Shu14]
- Mike Shulman. Splitting Idempotents. Blog post, 12 2014. URL: https://homotopytypetheory.org/2014/12/08/splitting-idempotents/.
Recent changes
- 2024-08-21. Fredrik Bakke. Literature – Idempotents in Intensional Type Theory (#1160).