Simple type theories
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-04-14.
Last modified on 2023-09-11.
{-# OPTIONS --guardedness --allow-unsolved-metas #-} module type-theories.simple-type-theories where
Imports
open import foundation.action-on-identifications-functions open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels
Idea
Simple type theories are type theories that have no type dependency. The category of simple type theories is equivalent to the category of multisorted algebraic theories.
Definitions
module simple where record system {l1 : Level} (l2 : Level) (T : UU l1) : UU (l1 ⊔ lsuc l2) where coinductive field element : T → UU l2 slice : (X : T) → system l2 T record fibered-system {l1 l2 l3 : Level} (l4 : Level) {T : UU l1} (S : T → UU l2) (A : system l3 T) : UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l4) where coinductive field element : {X : T} → S X → system.element A X → UU l4 slice : {X : T} → S X → fibered-system l4 S (system.slice A X) record section-system {l1 l2 l3 l4 : Level} {T : UU l1} {S : T → UU l2} {A : system l3 T} (B : fibered-system l4 S A) (f : (X : T) → S X) : UU (l1 ⊔ l3 ⊔ l4) where coinductive field element : {X : T} (x : system.element A X) → fibered-system.element B (f X) x slice : (X : T) → section-system (fibered-system.slice B (f X)) f ------------------------------------------------------------------------------
We will introduce homotopies of sections of fibered systems. However, in order to define concatenation of those homotopies, we will first define heterogeneous homotopies of sections of fibered systems.
Eq-fibered-system' : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B B' : fibered-system l4 S A} (α : Id B B') {f f' : (X : T) → S X} (g : section-system B f) (g' : section-system B' f') → fibered-system l4 (λ t → Id (f t) (f' t)) A fibered-system.element (Eq-fibered-system' {B = B} refl {f} g g') {X} p x = Id ( tr ( λ u → fibered-system.element B u x) ( p) ( section-system.element g x)) ( section-system.element g' x) fibered-system.slice (Eq-fibered-system' {B = B} refl g g') {X} p = Eq-fibered-system' ( ap (fibered-system.slice B) p) ( section-system.slice g X) ( section-system.slice g' X) htpy-section-system' : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B B' : fibered-system l4 S A} (α : Id B B') {f f' : (X : T) → S X} (H : f ~ f') (g : section-system B f) (g' : section-system B' f') → UU (l1 ⊔ l2 ⊔ l4) htpy-section-system' α H g g' = section-system (Eq-fibered-system' α g g') H concat-htpy-section-system' : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B B' B'' : fibered-system l4 S A} {α : Id B B'} {β : Id B' B''} (γ : Id B B'') (δ : Id (α ∙ β) γ) {f f' f'' : (X : T) → S X} {H : f ~ f'} {H' : f' ~ f''} {g : section-system B f} {g' : section-system B' f'} {g'' : section-system B'' f''} (K : htpy-section-system' α H g g') (K' : htpy-section-system' β H' g' g'') → htpy-section-system' γ (H ∙h H') g g'' section-system.element ( concat-htpy-section-system' {B = B} {α = refl} {refl} .refl refl {H = H} {H'} {g} K K') {X} x = ( tr-concat { B = λ t → fibered-system.element B t x} ( H X) ( H' X) ( section-system.element g x)) ∙ ( ( ap ( tr ( λ t → fibered-system.element B t x) ( H' X)) ( section-system.element K x)) ∙ ( section-system.element K' x)) section-system.slice ( concat-htpy-section-system' {B = B} {α = refl} {refl} .refl refl {H = H} {H'} K K') X = concat-htpy-section-system' ( ap (fibered-system.slice B) (H X ∙ H' X)) ( inv (ap-concat (fibered-system.slice B) (H X) (H' X))) ( section-system.slice K X) ( section-system.slice K' X) inv-htpy-section-system' : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B B' : fibered-system l4 S A} {α : Id B B'} (β : Id B' B) (γ : Id (inv α) β) {f f' : (X : T) → S X} {g : section-system B f} {g' : section-system B' f'} {H : f ~ f'} → htpy-section-system' α H g g' → htpy-section-system' β (inv-htpy H) g' g section-system.element ( inv-htpy-section-system' {α = refl} .refl refl {H = H} K) {X} x = eq-transpose-tr ( H X) ( inv (section-system.element K x)) section-system.slice ( inv-htpy-section-system' {B = B} {α = refl} .refl refl {H = H} K) X = inv-htpy-section-system' ( ap (fibered-system.slice B) (inv (H X))) ( inv (ap-inv (fibered-system.slice B) (H X))) ( section-system.slice K X)
Nonhomogenous homotopies
We specialize the above definitions to nonhomogenous homotopies.
htpy-section-system : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B : fibered-system l4 S A} {f f' : (X : T) → S X} → (f ~ f') → section-system B f → section-system B f' → UU (l1 ⊔ l2 ⊔ l4) htpy-section-system H g g' = htpy-section-system' refl H g g' refl-htpy-section-system : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B : fibered-system l4 S A} {f : (X : T) → S X} (g : section-system B f) → htpy-section-system refl-htpy g g section-system.element (refl-htpy-section-system g) = refl-htpy section-system.slice (refl-htpy-section-system g) X = refl-htpy-section-system (section-system.slice g X) concat-htpy-section-system : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B : fibered-system l4 S A} {f f' f'' : (X : T) → S X} {g : section-system B f} {g' : section-system B f'} {g'' : section-system B f''} {H : f ~ f'} {H' : f' ~ f''} → htpy-section-system H g g' → htpy-section-system H' g' g'' → htpy-section-system (H ∙h H') g g'' concat-htpy-section-system K K' = concat-htpy-section-system' refl refl K K' inv-htpy-section-system : {l1 l2 l3 l4 : Level} {T : UU l1} {A : system l2 T} {S : T → UU l3} {B : fibered-system l4 S A} {f f' : (X : T) → S X} {g : section-system B f} {g' : section-system B f'} {H : f ~ f'} → htpy-section-system H g g' → htpy-section-system (inv-htpy H) g' g inv-htpy-section-system K = inv-htpy-section-system' refl refl K
constant-fibered-system : {l1 l2 l3 l4 : Level} {T : UU l1} (A : system l2 T) {S : UU l3} (B : system l4 S) → fibered-system l4 (λ X → S) A fibered-system.element (constant-fibered-system A B) Y x = system.element B Y fibered-system.slice (constant-fibered-system A B) {X} Y = constant-fibered-system ( system.slice A X) ( system.slice B Y) hom-system : {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l2} (f : T → S) (A : system l3 T) (B : system l4 S) → UU (l1 ⊔ l3 ⊔ l4) hom-system f A B = section-system (constant-fibered-system A B) f htpy-hom-system : {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l2} {f : T → S} {A : system l3 T} {B : system l4 S} (g h : hom-system f A B) → UU (l1 ⊔ l3 ⊔ l4) htpy-hom-system g h = htpy-section-system {!!} {!!} {!!} id-hom-system : {l1 l2 : Level} {T : UU l1} (A : system l2 T) → hom-system id A A section-system.element (id-hom-system A) {X} = id section-system.slice (id-hom-system A) X = id-hom-system (system.slice A X) comp-hom-system : {l1 l2 l3 l4 l5 l6 : Level} {T : UU l1} {S : UU l2} {R : UU l3} {g : S → R} {f : T → S} {A : system l4 T} {B : system l5 S} {C : system l6 R} (β : hom-system g B C) (α : hom-system f A B) → hom-system (g ∘ f) A C section-system.element (comp-hom-system {f = f} β α) {X} = section-system.element β {f X} ∘ section-system.element α {X} section-system.slice (comp-hom-system {f = f} β α) X = comp-hom-system (section-system.slice β (f X)) (section-system.slice α X) record weakening {l1 l2 : Level} {T : UU l1} (A : system l2 T) : UU (l1 ⊔ l2) where coinductive field element : (X : T) → hom-system id A (system.slice A X) slice : (X : T) → weakening (system.slice A X) record preserves-weakening {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l2} {f : T → S} {A : system l3 T} {B : system l4 S} (WA : weakening A) (WB : weakening B) (h : hom-system f A B) : UU (l1 ⊔ l3 ⊔ l4) where coinductive field element : (X : T) → htpy-hom-system ( comp-hom-system ( section-system.slice h X) ( weakening.element WA X)) ( comp-hom-system ( weakening.element WB (f X)) ( h)) slice : (X : T) → preserves-weakening ( weakening.slice WA X) ( weakening.slice WB (f X)) ( section-system.slice h X) record substitution {l1 l2 : Level} {T : UU l1} (A : system l2 T) : UU (l1 ⊔ l2) where coinductive field element : {X : T} (x : system.element A X) → hom-system id (system.slice A X) A slice : (X : T) → substitution (system.slice A X) record preserves-substitution {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l2} {f : T → S} {A : system l3 T} {B : system l4 S} (SA : substitution A) (SB : substitution B) (h : hom-system f A B) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field element : {X : T} (x : system.element A X) → htpy-hom-system ( comp-hom-system ( h) ( substitution.element SA x)) ( comp-hom-system ( substitution.element SB ( section-system.element h x)) ( section-system.slice h X)) slice : (X : T) → preserves-substitution ( substitution.slice SA X) ( substitution.slice SB (f X)) ( section-system.slice h X) record generic-element {l1 l2 : Level} {T : UU l1} (A : system l2 T) : UU (l1 ⊔ l2) where coinductive field element : (X : T) → system.element (system.slice A X) X slice : (X : T) → generic-element (system.slice A X) record preserves-generic-element {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l2} {f : T → S} {A : system l3 T} {B : system l4 S} (δA : generic-element A) (δB : generic-element B) (h : hom-system f A B) : UU (l1 ⊔ l3 ⊔ l4) where coinductive field element : (X : T) → Id ( section-system.element ( section-system.slice h X) ( generic-element.element δA X)) ( generic-element.element δB (f X)) slice : (X : T) → preserves-generic-element ( generic-element.slice δA X) ( generic-element.slice δB (f X)) ( section-system.slice h X) module _ {l1 l2 : Level} {T : UU l1} where record weakening-preserves-weakening {A : system l2 T} (W : weakening A) : UU (l1 ⊔ l2) where coinductive field element : (X : T) → preserves-weakening ( W) ( weakening.slice W X) ( weakening.element W X) slice : (X : T) → weakening-preserves-weakening (weakening.slice W X) record substitution-preserves-substitution {A : system l2 T} (S : substitution A) : UU (l1 ⊔ l2) where coinductive field element : {X : T} (x : system.element A X) → preserves-substitution ( substitution.slice S X) ( S) ( substitution.element S x) slice : (X : T) → substitution-preserves-substitution (substitution.slice S X) record weakening-preserves-substitution {A : system l2 T} (W : weakening A) (S : substitution A) : UU (l1 ⊔ l2) where coinductive field element : (X : T) → preserves-substitution ( S) ( substitution.slice S X) ( weakening.element W X) slice : (X : T) → weakening-preserves-substitution ( weakening.slice W X) ( substitution.slice S X) record substitution-preserves-weakening {A : system l2 T} (W : weakening A) (S : substitution A) : UU (l1 ⊔ l2) where coinductive field element : {X : T} (x : system.element A X) → preserves-weakening ( weakening.slice W X) ( W) ( substitution.element S x) slice : (X : T) → substitution-preserves-weakening ( weakening.slice W X) ( substitution.slice S X) record weakening-preserves-generic-element {A : system l2 T} (W : weakening A) (δ : generic-element A) : UU (l1 ⊔ l2) where coinductive field element : (X : T) → preserves-generic-element ( δ) ( generic-element.slice δ X) ( weakening.element W X) slice : (X : T) → weakening-preserves-generic-element ( weakening.slice W X) ( generic-element.slice δ X) record substitution-preserves-generic-element {A : system l2 T} (S : substitution A) (δ : generic-element A) : UU (l1 ⊔ l2) where coinductive field element : {X : T} (x : system.element A X) → preserves-generic-element ( generic-element.slice δ X) ( δ) ( substitution.element S x) slice : (X : T) → substitution-preserves-generic-element ( substitution.slice S X) ( generic-element.slice δ X) record substitution-cancels-weakening {A : system l2 T} (W : weakening A) (S : substitution A) : UU (l1 ⊔ l2) where coinductive field element : {X : T} (x : system.element A X) → htpy-hom-system ( comp-hom-system ( substitution.element S x) ( weakening.element W X)) ( id-hom-system A) slice : (X : T) → substitution-cancels-weakening ( weakening.slice W X) ( substitution.slice S X) record generic-element-is-identity {A : system l2 T} (S : substitution A) (δ : generic-element A) : UU (l1 ⊔ l2) where coinductive field element : {X : T} (x : system.element A X) → Id ( section-system.element ( substitution.element S x) ( generic-element.element δ X)) ( x) slice : (X : T) → generic-element-is-identity ( substitution.slice S X) ( generic-element.slice δ X) record substitution-by-generic-element {A : system l2 T} (W : weakening A) (S : substitution A) (δ : generic-element A) : UU (l1 ⊔ l2) where coinductive field element : (X : T) → htpy-hom-system ( comp-hom-system ( substitution.element ( substitution.slice S X) ( generic-element.element δ X)) ( weakening.element (weakening.slice W X) X)) ( id-hom-system (system.slice A X)) slice : (X : T) → substitution-by-generic-element ( weakening.slice W X) ( substitution.slice S X) ( generic-element.slice δ X) record type-theory (l1 l2 : Level) : UU (lsuc l1 ⊔ lsuc l2) where field typ : UU l1 sys : system l2 typ W : weakening sys S : substitution sys δ : generic-element sys WW : weakening-preserves-weakening W SS : substitution-preserves-substitution S WS : weakening-preserves-substitution W S SW : substitution-preserves-weakening W S Wδ : weakening-preserves-generic-element W δ Sδ : substitution-preserves-generic-element S δ S!W : substitution-cancels-weakening W S δid : generic-element-is-identity S δ Sδ! : substitution-by-generic-element W S δ slice-type-theory : {l1 l2 : Level} (T : type-theory l1 l2) (X : type-theory.typ T) → type-theory l1 l2 type-theory.typ (slice-type-theory T X) = type-theory.typ T type-theory.sys (slice-type-theory T X) = system.slice (type-theory.sys T) X type-theory.W (slice-type-theory T X) = weakening.slice (type-theory.W T) X type-theory.S (slice-type-theory T X) = substitution.slice (type-theory.S T) X type-theory.δ (slice-type-theory T X) = generic-element.slice (type-theory.δ T) X type-theory.WW (slice-type-theory T X) = weakening-preserves-weakening.slice (type-theory.WW T) X type-theory.SS (slice-type-theory T X) = substitution-preserves-substitution.slice (type-theory.SS T) X type-theory.WS (slice-type-theory T X) = weakening-preserves-substitution.slice (type-theory.WS T) X type-theory.SW (slice-type-theory T X) = substitution-preserves-weakening.slice (type-theory.SW T) X type-theory.Wδ (slice-type-theory T X) = weakening-preserves-generic-element.slice (type-theory.Wδ T) X type-theory.Sδ (slice-type-theory T X) = substitution-preserves-generic-element.slice (type-theory.Sδ T) X type-theory.S!W (slice-type-theory T X) = substitution-cancels-weakening.slice (type-theory.S!W T) X type-theory.δid (slice-type-theory T X) = generic-element-is-identity.slice (type-theory.δid T) X type-theory.Sδ! (slice-type-theory T X) = substitution-by-generic-element.slice (type-theory.Sδ! T) X module dependent-simple where open import type-theories.dependent-type-theories open import type-theories.fibered-dependent-type-theories system : {l1 l2 : Level} {T : UU l1} → simple.system l2 T → dependent.system l1 l2 dependent.system.type (system {T = T} A) = T dependent.system.element (system A) X = simple.system.element A X dependent.system.slice (system A) X = system (simple.system.slice A X) fibered-system : {l1 l2 l3 l4 : Level} {T : UU l1} {A : simple.system l2 T} {S : T → UU l3} → simple.fibered-system l4 S A → dependent.fibered-system l3 l4 (system A) dependent.fibered-system.type (fibered-system {S = S} B) = S dependent.fibered-system.element (fibered-system B) Y = simple.fibered-system.element B Y dependent.fibered-system.slice (fibered-system B) Y = fibered-system (simple.fibered-system.slice B Y) section-system : {l1 l2 l3 l4 : Level} {T : UU l1} {A : simple.system l2 T} {S : T → UU l3} {B : simple.fibered-system l4 S A} {f : (X : T) → S X} → simple.section-system B f → dependent.section-system (fibered-system B) dependent.section-system.type (section-system {B = B} {f} g) X = f X dependent.section-system.element (section-system {B = B} {f} g) x = simple.section-system.element g x dependent.section-system.slice (section-system {B = B} {f} g) X = section-system (simple.section-system.slice g X) Eq-fibered-system' : {l1 l2 l3 l4 : Level} {T : UU l1} {A : simple.system l2 T} {S : T → UU l3} {B B' : simple.fibered-system l4 S A} (α : Id B B') {f f' : (X : T) → S X} (g : simple.section-system B f) (g' : simple.section-system B' f') → fibered.hom-fibered-system ( dependent.id-hom-system (system A)) ( fibered-system (simple.Eq-fibered-system' α g g')) ( dependent.Eq-fibered-system' ( ap fibered-system α) ( section-system g) ( section-system g')) fibered.section-fibered-system.type (Eq-fibered-system' refl f g) Y = Y fibered.section-fibered-system.element (Eq-fibered-system' refl f g) y = y fibered.section-fibered-system.slice (Eq-fibered-system' refl f g) Y = {!Eq-fibered-system' ? ? ? !} htpy-section-system' : {l1 l2 l3 l4 : Level} {T : UU l1} {A : simple.system l2 T} {S : T → UU l3} {B B' : simple.fibered-system l4 S A} (α : Id B B') {f f' : (X : T) → S X} {H : f ~ f'} {g : simple.section-system B f} {g' : simple.section-system B' f'} → simple.htpy-section-system' α H g g' → dependent.htpy-section-system' ( ap fibered-system α) ( section-system g) ( section-system g') dependent.section-system.type (htpy-section-system' refl {H = H} K) = H dependent.section-system.element (htpy-section-system' refl {H = H} K) = simple.section-system.element K dependent.section-system.slice (htpy-section-system' refl {H = H} K) X = {!htpy-section-system' ? ? !} htpy-section-system : {l1 l2 l3 l4 : Level} {T : UU l1} {A : simple.system l2 T} {S : T → UU l3} {B : simple.fibered-system l4 S A} {f f' : (X : T) → S X} {H : f ~ f'} {g : simple.section-system B f} {g' : simple.section-system B f'} → simple.htpy-section-system H g g' → dependent.htpy-section-system (section-system g) (section-system g') dependent.section-system.type (htpy-section-system {H = H} K) = H dependent.section-system.element (htpy-section-system {H = H} K) = simple.section-system.element K dependent.section-system.slice (htpy-section-system {H = H} K) X = {!htpy-section-system ? !} hom-system : {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l3} {f : T → S} {A : simple.system l2 T} {B : simple.system l4 S} → simple.hom-system f A B → dependent.hom-system (system A) (system B) dependent.section-system.type (hom-system {f = f} h) = f dependent.section-system.element (hom-system h) = simple.section-system.element h dependent.section-system.slice (hom-system h) X = hom-system (simple.section-system.slice h X) comp-hom-system : {l1 l2 l3 l4 l5 l6 : Level} {T : UU l1} {S : UU l2} {R : UU l3} {g : S → R} {f : T → S} {A : simple.system l4 T} {B : simple.system l5 S} {C : simple.system l6 R} (k : simple.hom-system g B C) (h : simple.hom-system f A B) → dependent.htpy-hom-system ( hom-system ( simple.comp-hom-system k h)) ( dependent.comp-hom-system ( hom-system k) ( hom-system h)) dependent.section-system.type (comp-hom-system k h) X = refl dependent.section-system.element (comp-hom-system k h) x = refl dependent.section-system.slice (comp-hom-system {f = f} k h) X = comp-hom-system ( simple.section-system.slice k (f X)) ( simple.section-system.slice h X) htpy-hom-system : {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l2} {f : T → S} {A : simple.system l3 T} {B : simple.system l4 S} {g h : simple.hom-system f A B} → simple.htpy-hom-system g h → dependent.htpy-hom-system (hom-system g) (hom-system h) dependent.section-system.type (htpy-hom-system H) = refl-htpy dependent.section-system.element (htpy-hom-system {f = f} H) {X} x = simple.section-system.element {f = {!!}} H x --simple.section-system.element H {X} x dependent.section-system.slice (htpy-hom-system H) X = {!!} --htpy-hom-system (simple.section-system.slice H X) weakening : {l1 l2 : Level} {T : UU l1} {A : simple.system l2 T} → simple.weakening A → dependent.weakening (system A) dependent.weakening.type (weakening W) X = hom-system (simple.weakening.element W X) dependent.weakening.slice (weakening W) X = weakening (simple.weakening.slice W X) preserves-weakening : {l1 l2 l3 l4 : Level} {T : UU l1} {S : UU l2} {f : T → S} {A : simple.system l3 T} {B : simple.system l4 S} {WA : simple.weakening A} {WB : simple.weakening B} {g : simple.hom-system f A B} → simple.preserves-weakening WA WB g → dependent.preserves-weakening ( weakening WA) ( weakening WB) ( hom-system g) dependent.preserves-weakening.type ( preserves-weakening {f = f} {WA = WA} {WB} {g = g} Wg) X = dependent.concat-htpy-hom-system ( dependent.inv-htpy-hom-system ( comp-hom-system ( simple.section-system.slice g X) ( simple.weakening.element WA X))) ( dependent.concat-htpy-hom-system ( htpy-hom-system (simple.preserves-weakening.element Wg X)) ( comp-hom-system ( simple.weakening.element WB (f X)) ( g))) dependent.preserves-weakening.slice (preserves-weakening Wg) X = preserves-weakening (simple.preserves-weakening.slice Wg X) substitution : {l1 l2 : Level} {T : UU l1} {A : simple.system l2 T} → simple.substitution A → dependent.substitution (system A) dependent.substitution.type ( substitution S) x = hom-system (simple.substitution.element S x) dependent.substitution.slice ( substitution S) X = substitution (simple.substitution.slice S X) generic-element : {l1 l2 : Level} {T : UU l1} {A : simple.system l2 T} → (W : simple.weakening A) → simple.generic-element A → dependent.generic-element (weakening W) dependent.generic-element.type ( generic-element W δ) X = simple.generic-element.element δ X dependent.generic-element.slice ( generic-element W δ) X = generic-element ( simple.weakening.slice W X) ( simple.generic-element.slice δ X) weakening-preserves-weakening : {l1 l2 : Level} {T : UU l1} {A : simple.system l2 T} {W : simple.weakening A} → simple.weakening-preserves-weakening W → dependent.weakening-preserves-weakening (weakening W) dependent.weakening-preserves-weakening.type ( weakening-preserves-weakening WW) X = preserves-weakening (simple.weakening-preserves-weakening.element WW X) dependent.weakening-preserves-weakening.slice ( weakening-preserves-weakening WW) X = weakening-preserves-weakening ( simple.weakening-preserves-weakening.slice WW X)
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-07. Fredrik Bakke. Move public imports before "Imports" block (#642).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).