Discrete reflexive relations
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-08-26.
Last modified on 2024-11-19.
module foundation.discrete-reflexive-relations where
Imports
open import foundation.binary-relations open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.reflexive-relations open import foundation.torsorial-type-families open import foundation.universe-levels open import foundation-core.identity-types open import foundation-core.propositions
Idea
A reflexive relation R
on A
is said to be
discrete¶
if, for every element x : A
, the type family R x
is
torsorial. In other words, the
dependent sum Σ (y : A), (R x y)
is
contractible for every x
.
The standard discrete reflexive relation¶ on a type X
is the
relation defined by identifications,
R x y := (x = y).
Definitions
The predicate on reflexive relations of being discrete
module _ {l1 l2 : Level} {A : UU l1} (R : Reflexive-Relation l2 A) where is-discrete-prop-Reflexive-Relation : Prop (l1 ⊔ l2) is-discrete-prop-Reflexive-Relation = Π-Prop A (λ a → is-torsorial-Prop (rel-Reflexive-Relation R a)) is-discrete-Reflexive-Relation : UU (l1 ⊔ l2) is-discrete-Reflexive-Relation = type-Prop is-discrete-prop-Reflexive-Relation is-prop-is-discrete-Reflexive-Relation : is-prop is-discrete-Reflexive-Relation is-prop-is-discrete-Reflexive-Relation = is-prop-type-Prop is-discrete-prop-Reflexive-Relation
Properties
The identity relation is discrete
module _ {l : Level} (A : UU l) where is-discrete-Id-Reflexive-Relation : is-discrete-Reflexive-Relation (Id-Reflexive-Relation A) is-discrete-Id-Reflexive-Relation = is-torsorial-Id
See also
Recent changes
- 2024-11-19. Egbert Rijke. Correcting an incorrect definition of discrete relations and discrete graphs (#1222).
- 2024-04-11. Fredrik Bakke. Strict symmetrizations of binary relations (#1025).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).