The binary minimum of real numbers
Content created by Louis Wasserman.
Created on 2025-09-02.
Last modified on 2025-09-02.
{-# OPTIONS --lossy-unification #-} module real-numbers.binary-minimum-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.identity-types open import foundation.logical-equivalences open import foundation.transport-along-identifications open import foundation.universe-levels open import order-theory.greatest-lower-bounds-large-posets open import order-theory.large-meet-semilattices open import order-theory.meet-semilattices open import real-numbers.addition-real-numbers open import real-numbers.binary-maximum-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
The
minimum¶
of two Dedekind real numbers x
and
y
is their
greatest lower bound.
Definition
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where opaque min-ℝ : ℝ (l1 ⊔ l2) min-ℝ = neg-ℝ (max-ℝ (neg-ℝ x) (neg-ℝ y))
Properties
The binary minimum is a greatest lower bound
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where opaque unfolding leq-ℝ min-ℝ is-greatest-binary-lower-bound-min-ℝ : is-greatest-binary-lower-bound-Large-Poset ( ℝ-Large-Poset) ( x) ( y) ( min-ℝ x y) pr1 (is-greatest-binary-lower-bound-min-ℝ z) (z≤x , z≤y) = tr ( λ w → leq-ℝ w (min-ℝ x y)) ( neg-neg-ℝ z) ( neg-leq-ℝ (max-ℝ (neg-ℝ x) (neg-ℝ y)) (neg-ℝ z) ( leq-max-leq-leq-ℝ _ _ (neg-ℝ z) ( neg-leq-ℝ z x z≤x) ( neg-leq-ℝ z y z≤y))) pr2 (is-greatest-binary-lower-bound-min-ℝ z) z≤min = let case : {l : Level} (w : ℝ l) → leq-ℝ (neg-ℝ w) (max-ℝ (neg-ℝ x) (neg-ℝ y)) → leq-ℝ z w case w -w≤max = transitive-leq-ℝ z (min-ℝ x y) w ( tr ( leq-ℝ (min-ℝ x y)) ( neg-neg-ℝ _) ( neg-leq-ℝ (neg-ℝ w) (max-ℝ (neg-ℝ x) (neg-ℝ y)) -w≤max)) ( z≤min) in (case x (leq-left-max-ℝ _ _) , case y (leq-right-max-ℝ _ _)) abstract leq-min-leq-leq-ℝ : {l3 : Level} (z : ℝ l3) → leq-ℝ z x → leq-ℝ z y → leq-ℝ z (min-ℝ x y) leq-min-leq-leq-ℝ z x≤z y≤z = forward-implication (is-greatest-binary-lower-bound-min-ℝ z) (x≤z , y≤z)
The binary minimum is a binary lower bound
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where abstract leq-left-min-ℝ : leq-ℝ (min-ℝ x y) x leq-left-min-ℝ = pr1 ( is-binary-lower-bound-is-greatest-binary-lower-bound-Large-Poset ( ℝ-Large-Poset) ( x) ( y) ( is-greatest-binary-lower-bound-min-ℝ x y)) leq-right-min-ℝ : leq-ℝ (min-ℝ x y) y leq-right-min-ℝ = pr2 ( is-binary-lower-bound-is-greatest-binary-lower-bound-Large-Poset ( ℝ-Large-Poset) ( x) ( y) ( is-greatest-binary-lower-bound-min-ℝ x y))
The large poset of real numbers has meets
has-meets-ℝ-Large-Poset : has-meets-Large-Poset ℝ-Large-Poset meet-has-meets-Large-Poset has-meets-ℝ-Large-Poset = min-ℝ is-greatest-binary-lower-bound-meet-has-meets-Large-Poset has-meets-ℝ-Large-Poset = is-greatest-binary-lower-bound-min-ℝ
The real numbers at a specific universe level are a meet semilattice
ℝ-Order-Theoretic-Meet-Semilattice : (l : Level) → Order-Theoretic-Meet-Semilattice (lsuc l) l ℝ-Order-Theoretic-Meet-Semilattice l = ( ℝ-Poset l , λ x y → (min-ℝ x y , is-greatest-binary-lower-bound-min-ℝ x y))
For any ε : ℚ⁺
, (x < min-ℝ x y + ε) ∨ (y < min-ℝ x y + ε)
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where opaque unfolding min-ℝ approximate-above-min-ℝ : (ε : ℚ⁺) → type-disjunction-Prop ( le-prop-ℝ x (min-ℝ x y +ℝ real-ℚ⁺ ε)) ( le-prop-ℝ y (min-ℝ x y +ℝ real-ℚ⁺ ε)) approximate-above-min-ℝ ε = let case : {l : Level} → (w : ℝ l) → le-ℝ (max-ℝ (neg-ℝ x) (neg-ℝ y) -ℝ real-ℚ⁺ ε) (neg-ℝ w) → le-ℝ w (min-ℝ x y +ℝ real-ℚ⁺ ε) case w max-ε<-w = binary-tr le-ℝ ( neg-neg-ℝ w) ( distributive-neg-diff-ℝ _ _ ∙ commutative-add-ℝ _ _) ( neg-le-ℝ _ (neg-ℝ w) max-ε<-w) in elim-disjunction ( (le-prop-ℝ x (min-ℝ x y +ℝ real-ℚ⁺ ε)) ∨ (le-prop-ℝ y (min-ℝ x y +ℝ real-ℚ⁺ ε))) ( λ max-ε<-x → inl-disjunction (case x max-ε<-x)) ( λ max-ε<-y → inr-disjunction (case y max-ε<-y)) ( approximate-below-max-ℝ (neg-ℝ x) (neg-ℝ y) ε)
External links
- Minimum at Wikidata
Recent changes
- 2025-09-02. Louis Wasserman. Maximum and minimum of finite families of real numbers (#1522).
- 2025-09-02. Louis Wasserman. Opacify real numbers (#1521).