Homomorphisms of large meet-semilattices
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-05-10.
Last modified on 2023-11-24.
module order-theory.homomorphisms-large-meet-semilattices where
Imports
open import foundation.identity-types open import foundation.universe-levels open import order-theory.large-meet-semilattices open import order-theory.order-preserving-maps-large-posets
Idea
An homomorphism of
large meet-semilattices from K
to
L
is an
order preserving map from
K
to L
which preserves meets and the top element.
Definition
module _ {αK αL : Level → Level} {βK βL : Level → Level → Level} (K : Large-Meet-Semilattice αK βK) (L : Large-Meet-Semilattice αL βL) where record hom-Large-Meet-Semilattice : UUω where field hom-large-poset-hom-Large-Meet-Semilattice : hom-Large-Poset ( λ l → l) ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) preserves-meets-hom-Large-Meet-Semilattice : {l1 l2 : Level} (x : type-Large-Meet-Semilattice K l1) (y : type-Large-Meet-Semilattice K l2) → map-hom-Large-Poset ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) ( hom-large-poset-hom-Large-Meet-Semilattice) ( meet-Large-Meet-Semilattice K x y) = meet-Large-Meet-Semilattice L ( map-hom-Large-Poset ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) ( hom-large-poset-hom-Large-Meet-Semilattice) ( x)) ( map-hom-Large-Poset ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) ( hom-large-poset-hom-Large-Meet-Semilattice) ( y)) preserves-top-hom-Large-Meet-Semilattice : map-hom-Large-Poset ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) ( hom-large-poset-hom-Large-Meet-Semilattice) ( top-Large-Meet-Semilattice K) = top-Large-Meet-Semilattice L open hom-Large-Meet-Semilattice public module _ (f : hom-Large-Meet-Semilattice) where map-hom-Large-Meet-Semilattice : {l1 : Level} → type-Large-Meet-Semilattice K l1 → type-Large-Meet-Semilattice L l1 map-hom-Large-Meet-Semilattice = map-hom-Large-Poset ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) ( hom-large-poset-hom-Large-Meet-Semilattice f) preserves-order-hom-Large-Meet-Semilattice : {l1 l2 : Level} (x : type-Large-Meet-Semilattice K l1) (y : type-Large-Meet-Semilattice K l2) → leq-Large-Meet-Semilattice K x y → leq-Large-Meet-Semilattice L ( map-hom-Large-Meet-Semilattice x) ( map-hom-Large-Meet-Semilattice y) preserves-order-hom-Large-Meet-Semilattice = preserves-order-hom-Large-Poset ( large-poset-Large-Meet-Semilattice K) ( large-poset-Large-Meet-Semilattice L) ( hom-large-poset-hom-Large-Meet-Semilattice f)
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).