Inflationary maps on a poset
Content created by Egbert Rijke.
Created on 2025-02-09.
Last modified on 2025-02-09.
module order-theory.inflationary-maps-posets where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.inflationary-maps-preorders open import order-theory.order-preserving-maps-posets open import order-theory.posets
Idea
A map on a poset is said to be an inflationary map¶ if the inequality
holds for any element . In other words, a map on a poset is inflationary precisely when the map on its underlying preorder is inflationary. If is also order preserving we say that is an inflationary morphism¶.
Definitions
The predicate of being an inflationary map
module _ {l1 l2 : Level} (P : Poset l1 l2) (f : type-Poset P → type-Poset P) where is-inflationary-prop-map-Poset : Prop (l1 ⊔ l2) is-inflationary-prop-map-Poset = is-inflationary-prop-map-Preorder (preorder-Poset P) f is-inflationary-map-Poset : UU (l1 ⊔ l2) is-inflationary-map-Poset = is-inflationary-map-Preorder (preorder-Poset P) f is-prop-is-inflationary-map-Poset : is-prop is-inflationary-map-Poset is-prop-is-inflationary-map-Poset = is-prop-is-inflationary-map-Preorder (preorder-Poset P) f
The type of inflationary maps on a poset
module _ {l1 l2 : Level} (P : Poset l1 l2) where inflationary-map-Poset : UU (l1 ⊔ l2) inflationary-map-Poset = inflationary-map-Preorder (preorder-Poset P) module _ {l1 l2 : Level} (P : Poset l1 l2) (f : inflationary-map-Poset P) where map-inflationary-map-Poset : type-Poset P → type-Poset P map-inflationary-map-Poset = map-inflationary-map-Preorder (preorder-Poset P) f is-inflationary-inflationary-map-Poset : is-inflationary-map-Poset P map-inflationary-map-Poset is-inflationary-inflationary-map-Poset = is-inflationary-inflationary-map-Preorder (preorder-Poset P) f
The predicate on order preserving maps of being inflationary
module _ {l1 l2 : Level} (P : Poset l1 l2) (f : hom-Poset P P) where is-inflationary-prop-hom-Poset : Prop (l1 ⊔ l2) is-inflationary-prop-hom-Poset = is-inflationary-prop-hom-Preorder (preorder-Poset P) f is-inflationary-hom-Poset : UU (l1 ⊔ l2) is-inflationary-hom-Poset = is-inflationary-hom-Preorder (preorder-Poset P) f is-prop-is-inflationary-hom-Poset : is-prop is-inflationary-hom-Poset is-prop-is-inflationary-hom-Poset = is-prop-is-inflationary-hom-Preorder (preorder-Poset P) f
The type of inflationary morphisms on a poset
module _ {l1 l2 : Level} (P : Poset l1 l2) where inflationary-hom-Poset : UU (l1 ⊔ l2) inflationary-hom-Poset = inflationary-hom-Preorder (preorder-Poset P) module _ {l1 l2 : Level} (P : Poset l1 l2) (f : inflationary-hom-Poset P) where hom-inflationary-hom-Poset : hom-Poset P P hom-inflationary-hom-Poset = hom-inflationary-hom-Preorder (preorder-Poset P) f map-inflationary-hom-Poset : type-Poset P → type-Poset P map-inflationary-hom-Poset = map-inflationary-hom-Preorder (preorder-Poset P) f preserves-order-inflationary-hom-Poset : preserves-order-Poset P P map-inflationary-hom-Poset preserves-order-inflationary-hom-Poset = preserves-order-inflationary-hom-Preorder (preorder-Poset P) f is-inflationary-inflationary-hom-Poset : is-inflationary-map-Poset P map-inflationary-hom-Poset is-inflationary-inflationary-hom-Poset = is-inflationary-inflationary-hom-Preorder (preorder-Poset P) f inflationary-map-inflationary-hom-Poset : inflationary-map-Poset P inflationary-map-inflationary-hom-Poset = inflationary-map-inflationary-hom-Preorder (preorder-Poset P) f
Recent changes
- 2025-02-09. Egbert Rijke. Strict preorders (#1308).