Inflationary maps on a poset

Content created by Egbert Rijke.

Created on 2025-02-09.
Last modified on 2025-02-09.

module order-theory.inflationary-maps-posets where
Imports
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.inflationary-maps-preorders
open import order-theory.order-preserving-maps-posets
open import order-theory.posets

Idea

A map on a poset is said to be an inflationary map if the inequality

holds for any element . In other words, a map on a poset is inflationary precisely when the map on its underlying preorder is inflationary. If is also order preserving we say that is an inflationary morphism.

Definitions

The predicate of being an inflationary map

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : type-Poset P  type-Poset P)
  where

  is-inflationary-prop-map-Poset :
    Prop (l1  l2)
  is-inflationary-prop-map-Poset =
    is-inflationary-prop-map-Preorder (preorder-Poset P) f

  is-inflationary-map-Poset :
    UU (l1  l2)
  is-inflationary-map-Poset =
    is-inflationary-map-Preorder (preorder-Poset P) f

  is-prop-is-inflationary-map-Poset :
    is-prop is-inflationary-map-Poset
  is-prop-is-inflationary-map-Poset =
    is-prop-is-inflationary-map-Preorder (preorder-Poset P) f

The type of inflationary maps on a poset

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  inflationary-map-Poset :
    UU (l1  l2)
  inflationary-map-Poset =
    inflationary-map-Preorder (preorder-Poset P)

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : inflationary-map-Poset P)
  where

  map-inflationary-map-Poset :
    type-Poset P  type-Poset P
  map-inflationary-map-Poset =
    map-inflationary-map-Preorder (preorder-Poset P) f

  is-inflationary-inflationary-map-Poset :
    is-inflationary-map-Poset P map-inflationary-map-Poset
  is-inflationary-inflationary-map-Poset =
    is-inflationary-inflationary-map-Preorder (preorder-Poset P) f

The predicate on order preserving maps of being inflationary

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : hom-Poset P P)
  where

  is-inflationary-prop-hom-Poset : Prop (l1  l2)
  is-inflationary-prop-hom-Poset =
    is-inflationary-prop-hom-Preorder (preorder-Poset P) f

  is-inflationary-hom-Poset : UU (l1  l2)
  is-inflationary-hom-Poset =
    is-inflationary-hom-Preorder (preorder-Poset P) f

  is-prop-is-inflationary-hom-Poset :
    is-prop is-inflationary-hom-Poset
  is-prop-is-inflationary-hom-Poset =
    is-prop-is-inflationary-hom-Preorder (preorder-Poset P) f

The type of inflationary morphisms on a poset

module _
  {l1 l2 : Level} (P : Poset l1 l2)
  where

  inflationary-hom-Poset : UU (l1  l2)
  inflationary-hom-Poset =
    inflationary-hom-Preorder (preorder-Poset P)

module _
  {l1 l2 : Level} (P : Poset l1 l2) (f : inflationary-hom-Poset P)
  where

  hom-inflationary-hom-Poset :
    hom-Poset P P
  hom-inflationary-hom-Poset =
    hom-inflationary-hom-Preorder (preorder-Poset P) f

  map-inflationary-hom-Poset :
    type-Poset P  type-Poset P
  map-inflationary-hom-Poset =
    map-inflationary-hom-Preorder (preorder-Poset P) f

  preserves-order-inflationary-hom-Poset :
    preserves-order-Poset P P map-inflationary-hom-Poset
  preserves-order-inflationary-hom-Poset =
    preserves-order-inflationary-hom-Preorder (preorder-Poset P) f

  is-inflationary-inflationary-hom-Poset :
    is-inflationary-map-Poset P map-inflationary-hom-Poset
  is-inflationary-inflationary-hom-Poset =
    is-inflationary-inflationary-hom-Preorder (preorder-Poset P) f

  inflationary-map-inflationary-hom-Poset :
    inflationary-map-Poset P
  inflationary-map-inflationary-hom-Poset =
    inflationary-map-inflationary-hom-Preorder (preorder-Poset P) f

Recent changes