Lower Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-02-16.
Last modified on 2025-02-16.
module real-numbers.lower-dedekind-real-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.conjunction open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.powersets open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.truncated-types open import foundation.truncation-levels open import foundation.universal-quantification open import foundation.universe-levels
Idea
A subtype L
of
the rational numbers is a
lower Dedekind cut¶ if it satisfies the
following two conditions:
- Inhabitedness.
L
is inhabited. - Lower roundedness. A rational number
q
is inL
if and only if there existsq < r
such thatr ∈ L
.
The lower Dedekind real numbers¶ is the type of all lower Dedekind cuts.
Definition
Lower Dedekind cuts
module _ {l : Level} (L : subtype l ℚ) where is-lower-dedekind-cut-Prop : Prop l is-lower-dedekind-cut-Prop = (∃ ℚ L) ∧ (∀' ℚ (λ q → L q ⇔ (∃ ℚ (λ r → le-ℚ-Prop q r ∧ L r)))) is-lower-dedekind-cut : UU l is-lower-dedekind-cut = type-Prop is-lower-dedekind-cut-Prop
The lower Dedekind real numbers
lower-ℝ : (l : Level) → UU (lsuc l) lower-ℝ l = Σ (subtype l ℚ) is-lower-dedekind-cut module _ {l : Level} (x : lower-ℝ l) where cut-lower-ℝ : subtype l ℚ cut-lower-ℝ = pr1 x is-in-cut-lower-ℝ : ℚ → UU l is-in-cut-lower-ℝ = is-in-subtype cut-lower-ℝ is-lower-dedekind-cut-lower-ℝ : is-lower-dedekind-cut cut-lower-ℝ is-lower-dedekind-cut-lower-ℝ = pr2 x is-inhabited-cut-lower-ℝ : exists ℚ cut-lower-ℝ is-inhabited-cut-lower-ℝ = pr1 (pr2 x) is-rounded-cut-lower-ℝ : (q : ℚ) → is-in-cut-lower-ℝ q ↔ exists ℚ (λ r → le-ℚ-Prop q r ∧ cut-lower-ℝ r) is-rounded-cut-lower-ℝ = pr2 (pr2 x)
Properties
The lower Dedekind reals form a set
abstract is-set-lower-ℝ : (l : Level) → is-set (lower-ℝ l) is-set-lower-ℝ l = is-set-Σ ( is-set-function-type (is-trunc-Truncated-Type neg-one-𝕋)) ( λ q → is-set-is-prop (is-prop-type-Prop (is-lower-dedekind-cut-Prop q)))
Lower Dedekind cuts are closed under strict inequality on the rationals
module _ {l : Level} (x : lower-ℝ l) (p q : ℚ) where is-in-cut-le-ℚ-lower-ℝ : le-ℚ p q → is-in-cut-lower-ℝ x q → is-in-cut-lower-ℝ x p is-in-cut-le-ℚ-lower-ℝ p<q q<x = backward-implication ( is-rounded-cut-lower-ℝ x p) ( intro-exists q (p<q , q<x))
Lower Dedekind cuts are closed under inequality on the rationals
module _ {l : Level} (x : lower-ℝ l) (p q : ℚ) where is-in-cut-leq-ℚ-lower-ℝ : leq-ℚ p q → is-in-cut-lower-ℝ x q → is-in-cut-lower-ℝ x p is-in-cut-leq-ℚ-lower-ℝ p≤q q<x with decide-le-leq-ℚ p q ... | inl p<q = is-in-cut-le-ℚ-lower-ℝ x p q p<q q<x ... | inr q≤p = tr (is-in-cut-lower-ℝ x) (antisymmetric-leq-ℚ q p q≤p p≤q) q<x
Two lower real numbers with the same cut are equal
module _ {l : Level} (x y : lower-ℝ l) where eq-eq-cut-lower-ℝ : cut-lower-ℝ x = cut-lower-ℝ y → x = y eq-eq-cut-lower-ℝ = eq-type-subtype is-lower-dedekind-cut-Prop eq-sim-cut-lower-ℝ : sim-subtype (cut-lower-ℝ x) (cut-lower-ℝ y) → x = y eq-sim-cut-lower-ℝ = eq-eq-cut-lower-ℝ ∘ antisymmetric-sim-subtype (cut-lower-ℝ x) (cut-lower-ℝ y)
See also
- Upper Dedekind cuts, the dual structure, are defined in
real-numbers.upper-dedekind-real-numbers
. - Dedekind cuts, which form the usual real numbers, are defined in
real-numbers.dedekind-real-numbers
References
This page follows the terminology used in the exercises of Section 11 in [UF13].
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2025-02-16. Louis Wasserman. Break the Dedekind reals into lower and upper Dedekind reals (#1314).