Vector spaces
Content created by Louis Wasserman.
Created on 2025-11-21.
Last modified on 2025-11-21.
module linear-algebra.vector-spaces where
Imports
open import commutative-algebra.heyting-fields open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import linear-algebra.left-modules-commutative-rings
Idea
A vector space¶ is a left module over a Heyting field.
Definition
Vector-Space : {l1 : Level} (l2 : Level) → Heyting-Field l1 → UU (l1 ⊔ lsuc l2) Vector-Space l2 R = left-module-Commutative-Ring l2 (commutative-ring-Heyting-Field R)
Properties
module _ {l1 l2 : Level} (R : Heyting-Field l1) (V : Vector-Space l2 R) where ab-Vector-Space : Ab l2 ab-Vector-Space = ab-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) set-Vector-Space : Set l2 set-Vector-Space = set-Ab ab-Vector-Space type-Vector-Space : UU l2 type-Vector-Space = type-Ab ab-Vector-Space add-Vector-Space : type-Vector-Space → type-Vector-Space → type-Vector-Space add-Vector-Space = add-Ab ab-Vector-Space zero-Vector-Space : type-Vector-Space zero-Vector-Space = zero-Ab ab-Vector-Space neg-Vector-Space : type-Vector-Space → type-Vector-Space neg-Vector-Space = neg-Ab ab-Vector-Space mul-Vector-Space : type-Heyting-Field R → type-Vector-Space → type-Vector-Space mul-Vector-Space = mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) associative-add-Vector-Space : (v w x : type-Vector-Space) → add-Vector-Space (add-Vector-Space v w) x = add-Vector-Space v (add-Vector-Space w x) associative-add-Vector-Space = associative-add-Ab ab-Vector-Space left-unit-law-add-Vector-Space : (v : type-Vector-Space) → add-Vector-Space zero-Vector-Space v = v left-unit-law-add-Vector-Space = left-unit-law-add-Ab ab-Vector-Space right-unit-law-add-Vector-Space : (v : type-Vector-Space) → add-Vector-Space v zero-Vector-Space = v right-unit-law-add-Vector-Space = right-unit-law-add-Ab ab-Vector-Space left-inverse-law-add-Vector-Space : (v : type-Vector-Space) → add-Vector-Space (neg-Vector-Space v) v = zero-Vector-Space left-inverse-law-add-Vector-Space = left-inverse-law-add-Ab ab-Vector-Space right-inverse-law-add-Vector-Space : (v : type-Vector-Space) → add-Vector-Space v (neg-Vector-Space v) = zero-Vector-Space right-inverse-law-add-Vector-Space = right-inverse-law-add-Ab ab-Vector-Space commutative-add-Vector-Space : (v w : type-Vector-Space) → add-Vector-Space v w = add-Vector-Space w v commutative-add-Vector-Space = commutative-add-Ab ab-Vector-Space left-unit-law-mul-Vector-Space : (v : type-Vector-Space) → mul-Vector-Space (one-Heyting-Field R) v = v left-unit-law-mul-Vector-Space = left-unit-law-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) left-distributive-mul-add-Vector-Space : (r : type-Heyting-Field R) (v w : type-Vector-Space) → mul-Vector-Space r (add-Vector-Space v w) = add-Vector-Space (mul-Vector-Space r v) (mul-Vector-Space r w) left-distributive-mul-add-Vector-Space = left-distributive-mul-add-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) right-distributive-mul-add-Vector-Space : (r s : type-Heyting-Field R) (v : type-Vector-Space) → mul-Vector-Space (add-Heyting-Field R r s) v = add-Vector-Space (mul-Vector-Space r v) (mul-Vector-Space s v) right-distributive-mul-add-Vector-Space = right-distributive-mul-add-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) associative-mul-Vector-Space : (r s : type-Heyting-Field R) (v : type-Vector-Space) → mul-Vector-Space (mul-Heyting-Field R r s) v = mul-Vector-Space r (mul-Vector-Space s v) associative-mul-Vector-Space = associative-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) left-zero-law-mul-Vector-Space : (v : type-Vector-Space) → mul-Vector-Space (zero-Heyting-Field R) v = zero-Vector-Space left-zero-law-mul-Vector-Space = left-zero-law-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) right-zero-law-mul-Vector-Space : (r : type-Heyting-Field R) → mul-Vector-Space r zero-Vector-Space = zero-Vector-Space right-zero-law-mul-Vector-Space = right-zero-law-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) left-negative-law-mul-Vector-Space : (r : type-Heyting-Field R) (v : type-Vector-Space) → mul-Vector-Space (neg-Heyting-Field R r) v = neg-Vector-Space (mul-Vector-Space r v) left-negative-law-mul-Vector-Space = left-negative-law-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) right-negative-law-mul-Vector-Space : (r : type-Heyting-Field R) (v : type-Vector-Space) → mul-Vector-Space r (neg-Vector-Space v) = neg-Vector-Space (mul-Vector-Space r v) right-negative-law-mul-Vector-Space = right-negative-law-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V) mul-neg-one-Vector-Space : (v : type-Vector-Space) → mul-Vector-Space ( neg-Heyting-Field R (one-Heyting-Field R)) ( v) = neg-Vector-Space v mul-neg-one-Vector-Space = mul-neg-one-left-module-Commutative-Ring ( commutative-ring-Heyting-Field R) ( V)
Any Heyting field is a vector space over itself
vector-space-heyting-field-Heyting-Field : {l : Level} (R : Heyting-Field l) → Vector-Space l R vector-space-heyting-field-Heyting-Field R = left-module-commutative-ring-Commutative-Ring ( commutative-ring-Heyting-Field R)
See also
External links
- Vector space at Wikidata
- Vector space on Wikipedia
Recent changes
- 2025-11-21. Louis Wasserman. Vector spaces (#1689).