Convergent sequences in metric spaces
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
module metric-spaces.convergent-sequences-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sequences open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.limits-of-sequences-metric-spaces open import metric-spaces.limits-of-sequences-premetric-spaces open import metric-spaces.limits-of-sequences-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.sequences-metric-spaces open import metric-spaces.short-functions-metric-spaces
Idea
A sequence in a metric space is convergent¶ if it has a limit. Short maps between metric spaces preserve convergent sequences.
Definitions
Convergent sequences in metric spaces
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where subtype-convergent-sequence-Metric-Space : subtype (l1 ⊔ l2) (sequence-type-Metric-Space M) subtype-convergent-sequence-Metric-Space = has-limit-prop-sequence-Metric-Space M convergent-sequence-Metric-Space : UU (l1 ⊔ l2) convergent-sequence-Metric-Space = type-subtype subtype-convergent-sequence-Metric-Space module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (u : convergent-sequence-Metric-Space M) where seq-convergent-sequence-Metric-Space : sequence-type-Metric-Space M seq-convergent-sequence-Metric-Space = pr1 u has-limit-convergent-sequence-Metric-Space : has-limit-sequence-Metric-Space M seq-convergent-sequence-Metric-Space has-limit-convergent-sequence-Metric-Space = pr2 u limit-convergent-sequence-Metric-Space : type-Metric-Space M limit-convergent-sequence-Metric-Space = limit-has-limit-sequence-Metric-Space M seq-convergent-sequence-Metric-Space has-limit-convergent-sequence-Metric-Space is-limit-limit-convergent-sequence-Metric-Space : is-limit-sequence-Metric-Space M seq-convergent-sequence-Metric-Space limit-convergent-sequence-Metric-Space is-limit-limit-convergent-sequence-Metric-Space = is-limit-limit-has-limit-sequence-Metric-Space M seq-convergent-sequence-Metric-Space has-limit-convergent-sequence-Metric-Space
Properties
Short maps between metric spaces preserve convergent sequences and their limits
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-function-Metric-Space A B) (u : convergent-sequence-Metric-Space A) where seq-short-map-convergent-sequence-Metric-Space : sequence-type-Metric-Space B seq-short-map-convergent-sequence-Metric-Space = map-sequence ( map-short-function-Metric-Space A B f) ( seq-convergent-sequence-Metric-Space A u) has-limit-seq-short-map-convergent-sequence-Metric-Space : has-limit-sequence-Metric-Space B seq-short-map-convergent-sequence-Metric-Space has-limit-seq-short-map-convergent-sequence-Metric-Space = ( map-short-function-Metric-Space A B f ( limit-convergent-sequence-Metric-Space A u)) , ( short-map-limit-sequence-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( f) ( seq-convergent-sequence-Metric-Space A u) ( limit-convergent-sequence-Metric-Space A u) ( is-limit-limit-convergent-sequence-Metric-Space A u)) map-short-map-convergent-sequence-Metric-Space : convergent-sequence-Metric-Space B map-short-map-convergent-sequence-Metric-Space = seq-short-map-convergent-sequence-Metric-Space , has-limit-seq-short-map-convergent-sequence-Metric-Space eq-limit-short-map-convergent-sequence-Metric-Space : ( map-short-function-Metric-Space A B f ( limit-convergent-sequence-Metric-Space A u)) = ( limit-convergent-sequence-Metric-Space B ( map-short-map-convergent-sequence-Metric-Space)) eq-limit-short-map-convergent-sequence-Metric-Space = refl
See also
- The metric space of convergent sequences in a metric space
Recent changes
- 2025-05-01. malarbol. Limits of sequences in metric spaces (#1378).