Left submodules over commutative rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.left-submodules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.propositions open import foundation.universe-levels open import linear-algebra.left-modules-commutative-rings open import linear-algebra.left-submodules-rings open import linear-algebra.subsets-left-modules-commutative-rings
Idea
A
left submodule¶
of a left module M over a
commutative ring R is a
subset of M that
is closed under addition and multiplication by a scalar from R.
Definition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (S : subset-left-module-Commutative-Ring l3 R M) where is-left-submodule-prop-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3) is-left-submodule-prop-Commutative-Ring = is-left-submodule-prop-Ring (ring-Commutative-Ring R) M S is-left-submodule-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3) is-left-submodule-Commutative-Ring = type-Prop is-left-submodule-prop-Commutative-Ring left-submodule-Commutative-Ring : {l1 l2 : Level} (l3 : Level) (R : Commutative-Ring l1) → left-module-Commutative-Ring l2 R → UU (l1 ⊔ l2 ⊔ lsuc l3) left-submodule-Commutative-Ring l3 R = left-submodule-Ring l3 (ring-Commutative-Ring R) module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (M : left-module-Commutative-Ring l2 R) (S : left-submodule-Commutative-Ring l3 R M) where left-module-left-submodule-Commutative-Ring : left-module-Commutative-Ring (l2 ⊔ l3) R left-module-left-submodule-Commutative-Ring = left-module-left-submodule-Ring (ring-Commutative-Ring R) M S
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).