Central elements of groups

Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.

Created on 2023-03-18.
Last modified on 2023-11-24.

module group-theory.central-elements-groups where
Imports
open import foundation.action-on-identifications-functions
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import group-theory.central-elements-monoids
open import group-theory.conjugation
open import group-theory.groups

Idea

An element x of a group G is said to be central if xy = yx for every y : G.

Definition

module _
  {l : Level} (G : Group l)
  where

  is-central-element-prop-Group : type-Group G  Prop l
  is-central-element-prop-Group =
    is-central-element-prop-Monoid (monoid-Group G)

  is-central-element-Group : type-Group G  UU l
  is-central-element-Group = is-central-element-Monoid (monoid-Group G)

  is-prop-is-central-element-Group :
    (x : type-Group G)  is-prop (is-central-element-Group x)
  is-prop-is-central-element-Group =
    is-prop-is-central-element-Monoid (monoid-Group G)

Properties

The unit element is central

module _
  {l : Level} (G : Group l)
  where

  is-central-element-unit-Group : is-central-element-Group G (unit-Group G)
  is-central-element-unit-Group =
    is-central-element-unit-Monoid (monoid-Group G)

The product of two central elements is central

module _
  {l : Level} (G : Group l)
  where

  is-central-element-mul-Group :
    {x y : type-Group G} 
    is-central-element-Group G x  is-central-element-Group G y 
    is-central-element-Group G (mul-Group G x y)
  is-central-element-mul-Group {x} {y} =
    is-central-element-mul-Monoid (monoid-Group G) x y

The inverse of a central element is central

module _
  {l : Level} (G : Group l)
  where

  is-central-element-inv-Group :
    {x : type-Group G}  is-central-element-Group G x 
    is-central-element-Group G (inv-Group G x)
  is-central-element-inv-Group {x} H y =
    ( inv (inv-left-div-Group G y x)) 
    ( ap (inv-Group G) (inv (H (inv-Group G y)))) 
    ( inv-right-div-Group G x y)

The central elements are closed under conjugation

module _
  {l : Level} (G : Group l)
  where

  is-fixed-point-conjugation-is-central-element-Group :
    (x y : type-Group G)  is-central-element-Group G x 
    conjugation-Group G y x  x
  is-fixed-point-conjugation-is-central-element-Group x y H =
    ( ap  z  right-div-Group G z y) (inv (H y))) 
    ( is-retraction-right-div-Group G y x)

  is-central-element-conjugation-Group :
    (x y : type-Group G)  is-central-element-Group G x 
    is-central-element-Group G (conjugation-Group G y x)
  is-central-element-conjugation-Group x y H =
    is-closed-under-eq-subtype'
      ( is-central-element-prop-Group G)
      ( H)
      ( is-fixed-point-conjugation-is-central-element-Group x y H)

Recent changes