Russell’s paradox

Content created by Fredrik Bakke.

Created on 2024-10-09.
Last modified on 2026-01-29.

{-# OPTIONS --lossy-unification #-}

module set-theory.russells-paradox where
Imports
open import foundation.dependent-pair-types
open import foundation.functoriality-cartesian-product-types
open import foundation.identity-types
open import foundation.locally-small-types
open import foundation.logical-equivalences
open import foundation.negation
open import foundation.small-types
open import foundation.small-universes
open import foundation.surjective-maps
open import foundation.torsorial-type-families
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.universal-property-equivalences
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.empty-types
open import foundation-core.equivalences
open import foundation-core.functoriality-dependent-pair-types

open import trees.multisets
open import trees.small-multisets
open import trees.universal-multiset

Idea

Russell’s paradox arises when a set of all sets is assumed to exist.

Paradox. Given a set 𝒰 that contains all sets, then we may by diagonalization construct a new set, called the Russell set, of all sets who do not contain themselves as an element:

  Russell := {X ∈ 𝒰 | X ∉ X}.

It may then be demonstrated that Russell contains itself as an element if and only if it does not contain itself, but negation has no fixed points and so this gives a contradiction. ∎

In Russell’s paradox it is of no importance that the elementhood relation takes values in propositions. In other words, Russell’s paradox arises similarly if there is a multiset of all multisets. We will construct Russell’s paradox from the assumption that a universe 𝒰 is equivalent to a type A : 𝒰. We conclude that there can be no universe that is contained in itself. Furthermore, using replacement we show that for any type A : 𝒰, there is no surjective map A → 𝒰.

Definition

Russell’s multiset

Russell : (l : Level)  𝕍 (lsuc l)
Russell l =
  comprehension-𝕍
    ( universal-multiset-𝕍 l)
    ( λ X  X ∉-𝕍 X)

Properties

If a universe is small with respect to another universe, then Russells multiset is also small

module _
  {l1 l2 : Level} (H : is-small-universe l2 l1)
  where

  is-small-Russell : is-small-𝕍 l2 (Russell l1)
  is-small-Russell =
    is-small-comprehension-𝕍 l2
      { lsuc l1}
      { universal-multiset-𝕍 l1}
      { λ X  X ∉-𝕍 X}
      ( is-small-universal-multiset-𝕍 l2 H)
      ( λ X  is-small-∉-𝕍 l2 (K X) (K X))
    where
    K = is-small-multiset-𝕍 (pr2 H)

  resize-Russell : 𝕍 l2
  resize-Russell = resize-𝕍 (Russell l1) (is-small-Russell)

  is-small-resize-Russell :
    is-small-𝕍 (lsuc l1) (resize-Russell)
  is-small-resize-Russell =
    is-small-resize-𝕍 (Russell l1) (is-small-Russell)

  equiv-Russell-in-Russell :
    (Russell l1 ∈-𝕍 Russell l1)  (resize-Russell ∈-𝕍 resize-Russell)
  equiv-Russell-in-Russell =
    equiv-elementhood-resize-𝕍 (is-small-Russell) (is-small-Russell)

Russell’s paradox obtained from the assumption that 𝒰 is 𝒰-small

module _
  {l : Level} (H : is-small l (UU l))
  where

  equiv-in-notin-Russell :
    (Russell l ∈-𝕍 Russell l)  (Russell l ∉-𝕍 Russell l)
  equiv-in-notin-Russell =
    ( equiv-precomp (equiv-Russell-in-Russell K) empty) ∘e
    ( left-unit-law-Σ-is-contr
      { B =  t  (pr1 t) ∉-𝕍 (pr1 t))}
      ( is-torsorial-Id' (resize-Russell K))
      ( resize-Russell K , refl)) ∘e
    ( inv-associative-Σ) ∘e
    ( equiv-tot
      ( λ t 
        ( commutative-product) ∘e
        ( equiv-product-right
          ( inv-equiv
            ( ( equiv-concat' _ (resize-resize-𝕍 (is-small-Russell K))) ∘e
              ( eq-resize-𝕍
                ( is-small-multiset-𝕍 is-small-lsuc t)
                ( is-small-resize-Russell K))))))) ∘e
    ( associative-Σ)
    where
      K : is-small-universe l l
      K = (H ,  X  (X , id-equiv)))

  iff-in-notin-Russell :
    (Russell l ∈-𝕍 Russell l)  (Russell l ∉-𝕍 Russell l)
  iff-in-notin-Russell =
    iff-equiv equiv-in-notin-Russell

  paradox-Russell : empty
  paradox-Russell =
    no-fixed-points-neg (Russell l ∈-𝕍 Russell l) iff-in-notin-Russell

There can be no surjective map f : A ↠ 𝒰 for any A : 𝒰

This result uses the axiom of replacement.

no-surjection-onto-universe-is-small :
  {l1 l2 : Level} {A : UU l1}  is-small l2 A 
  (f : A  UU l2)  ¬ (is-surjective f)
no-surjection-onto-universe-is-small e f H =
  paradox-Russell (is-small-is-surjective H e is-locally-small-UU)

no-surjection-onto-universe :
  {l : Level} {A : UU l} (f : A  UU l)  ¬ (is-surjective f)
no-surjection-onto-universe =
  no-surjection-onto-universe-is-small is-small'

Recent changes