Russell’s paradox
Content created by Fredrik Bakke.
Created on 2024-10-09.
Last modified on 2024-10-09.
{-# OPTIONS --lossy-unification #-} module set-theory.russells-paradox where
Imports
open import foundation.dependent-pair-types open import foundation.functoriality-cartesian-product-types open import foundation.identity-types open import foundation.locally-small-types open import foundation.negation open import foundation.small-types open import foundation.small-universes open import foundation.surjective-maps open import foundation.torsorial-type-families open import foundation.type-arithmetic-cartesian-product-types open import foundation.type-arithmetic-dependent-pair-types open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.empty-types open import foundation-core.equivalences open import foundation-core.functoriality-dependent-pair-types open import trees.multisets open import trees.small-multisets open import trees.universal-multiset
Idea
Russell’s paradox¶
arises when a set of all sets is assumed to exist. In
Russell’s paradox it is of no importance that the elementhood relation takes
values in propositions. In other words,
Russell’s paradox arises similarly if there is a multiset
of all multisets. We will construct Russell’s paradox from the assumption that a
universe 𝒰
is
equivalent to a type A : 𝒰
. We conclude
that there can be no universe that is contained in itself. Furthermore, using
replacement we show that for any type A : 𝒰
,
there is no surjective map A → 𝒰
.
Definition
Russell’s multiset
Russell : (l : Level) → 𝕍 (lsuc l) Russell l = comprehension-𝕍 (universal-multiset-𝕍 l) (λ X → X ∉-𝕍 X)
Properties
If a universe is small with respect to another universe, then Russells multiset is also small
module _ {l1 l2 : Level} (H : is-small-universe l2 l1) where is-small-Russell : is-small-𝕍 l2 (Russell l1) is-small-Russell = is-small-comprehension-𝕍 l2 { lsuc l1} { universal-multiset-𝕍 l1} { λ z → z ∉-𝕍 z} ( is-small-universal-multiset-𝕍 l2 H) ( λ X → is-small-∉-𝕍 l2 (K X) (K X)) where K = is-small-multiset-𝕍 (pr2 H) resize-Russell : 𝕍 l2 resize-Russell = resize-𝕍 (Russell l1) (is-small-Russell) is-small-resize-Russell : is-small-𝕍 (lsuc l1) (resize-Russell) is-small-resize-Russell = is-small-resize-𝕍 (Russell l1) (is-small-Russell) equiv-Russell-in-Russell : (Russell l1 ∈-𝕍 Russell l1) ≃ (resize-Russell ∈-𝕍 resize-Russell) equiv-Russell-in-Russell = equiv-elementhood-resize-𝕍 (is-small-Russell) (is-small-Russell)
Russell’s paradox obtained from the assumption that 𝒰
is 𝒰
-small
paradox-Russell : {l : Level} → ¬ (is-small l (UU l)) paradox-Russell {l} H = no-fixed-points-neg ( R ∈-𝕍 R) ( pair (map-equiv β) (map-inv-equiv β)) where K : is-small-universe l l K = pair H (λ X → pair X id-equiv) R : 𝕍 (lsuc l) R = Russell l is-small-R : is-small-𝕍 l R is-small-R = is-small-Russell K R' : 𝕍 l R' = resize-Russell K is-small-R' : is-small-𝕍 (lsuc l) R' is-small-R' = is-small-resize-Russell K abstract p : resize-𝕍 R' is-small-R' = R p = resize-resize-𝕍 is-small-R α : (R ∈-𝕍 R) ≃ (R' ∈-𝕍 R') α = equiv-Russell-in-Russell K abstract β : (R ∈-𝕍 R) ≃ (R ∉-𝕍 R) β = ( equiv-precomp α empty) ∘e ( ( left-unit-law-Σ-is-contr { B = λ t → (pr1 t) ∉-𝕍 (pr1 t)} ( is-torsorial-Id' R') ( pair R' refl)) ∘e ( ( inv-associative-Σ (𝕍 l) (_= R') (λ t → (pr1 t) ∉-𝕍 (pr1 t))) ∘e ( ( equiv-tot ( λ t → ( commutative-product) ∘e ( equiv-product ( id-equiv) ( inv-equiv ( ( equiv-concat' _ ( p)) ∘e ( eq-resize-𝕍 ( is-small-multiset-𝕍 is-small-lsuc t) ( is-small-R'))))))) ∘e ( associative-Σ ( 𝕍 l) ( λ t → t ∉-𝕍 t) ( λ t → ( resize-𝕍 ( pr1 t) ( is-small-multiset-𝕍 is-small-lsuc (pr1 t))) = ( R))))))
There can be no surjective map f : A → 𝒰
for any A : 𝒰
no-surjection-onto-universe : {l : Level} {A : UU l} (f : A → UU l) → ¬ (is-surjective f) no-surjection-onto-universe f H = paradox-Russell ( is-small-is-surjective H ( is-small') ( is-locally-small-UU))
External links
- Russell’s paradox at Mathswitch
- Russell’s paradox at Lab
- Russell’s paradox at Wikipedia
Recent changes
- 2024-10-09. Fredrik Bakke. Idea text
set-theory
(#1189).