Large equivalence relations
Content created by Louis Wasserman.
Created on 2025-10-11.
Last modified on 2025-10-11.
module foundation.large-equivalence-relations where
Imports
open import foundation.dependent-pair-types open import foundation.equivalence-relations open import foundation.identity-types open import foundation.large-binary-relations open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels
Idea
A large equivalence relation¶ is a large preorder that is symmetric.
Definition
record Large-Equivalence-Relation {α : Level → Level} (β : Level → Level → Level) (X : (l : Level) → UU (α l)) : UUω where constructor make-Large-Equivalence-Relation field sim-prop-Large-Equivalence-Relation : Large-Relation-Prop β X refl-sim-Large-Equivalence-Relation : is-reflexive-Large-Relation-Prop X sim-prop-Large-Equivalence-Relation symmetric-sim-Large-Equivalence-Relation : is-symmetric-Large-Relation-Prop X sim-prop-Large-Equivalence-Relation transitive-sim-Large-Equivalence-Relation : is-transitive-Large-Relation-Prop X sim-prop-Large-Equivalence-Relation sim-Large-Equivalence-Relation : Large-Relation β X sim-Large-Equivalence-Relation x y = type-Prop (sim-prop-Large-Equivalence-Relation x y) sim-eq-Large-Equivalence-Relation : {l : Level} {x y : X l} → x = y → sim-Large-Equivalence-Relation x y sim-eq-Large-Equivalence-Relation {x = x} x=y = tr ( sim-Large-Equivalence-Relation x) ( x=y) ( refl-sim-Large-Equivalence-Relation x) equivalence-relation-Large-Equivalence-Relation : (l : Level) → equivalence-relation (β l l) (X l) equivalence-relation-Large-Equivalence-Relation l = ( sim-prop-Large-Equivalence-Relation , refl-sim-Large-Equivalence-Relation , symmetric-sim-Large-Equivalence-Relation , transitive-sim-Large-Equivalence-Relation) open Large-Equivalence-Relation public
Recent changes
- 2025-10-11. Louis Wasserman. Large similarity relations (#1572).