Extensions of families of elements

Content created by Egbert Rijke, Raymond Baker and Vojtěch Štěpančík.

Created on 2023-12-05.
Last modified on 2024-01-28.

module
  orthogonal-factorization-systems.extensions-lifts-families-of-elements
  where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types

open import orthogonal-factorization-systems.lifts-families-of-elements

Idea

Consider a family of elements a : I → A, a type family B over A and a lift

  b : (i : I) → B (a i)

of the family of elements a. An extension of b to A consists of a family of elements f : (x : A) → B x equipped with a homotopy f ∘ a ~ b.

More generally, given a family of elements a : (i : I) → A i, a type family B over A, and a dependent lift

  b : (i : I) → B i (a i)

of the family of elements A, a dependent extension of b to A consists of a family of elements

  f : (i : I) (x : A i) → B i x

equipped with a homotopy (i : I) → f i (a i) = b i.

Definitions

Evaluating families of elements at lifts of families of elements

Any family of elements a : (i : I) → A i induces an evaluation map

  ((i : I) (x : A i) → B i x) → ((i : I) → B i (a i))

defined by b ↦ (λ i → b i (a i)).

module _
  {l1 l2 l3 : Level} {I : UU l1} {A : I  UU l2} {B : (i : I)  A i  UU l3}
  (a : (i : I)  A i)
  where

  ev-dependent-lift-family-of-elements :
    ((i : I) (x : A i)  B i x)  dependent-lift-family-of-elements B a
  ev-dependent-lift-family-of-elements b i = b i (a i)

module _
  {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} {B : A  UU l3} (a : I  A)
  where

  ev-lift-family-of-elements :
    ((x : A)  B x)  lift-family-of-elements B a
  ev-lift-family-of-elements b i = b (a i)

Dependent extensions of dependent lifts of families of elements

module _
  {l1 l2 l3 : Level} {I : UU l1} {A : I  UU l2} (B : (i : I)  A i  UU l3)
  (a : (i : I)  A i) (b : dependent-lift-family-of-elements B a)
  where

  is-extension-dependent-lift-family-of-elements :
    (f : (i : I) (x : A i)  B i x)  UU (l1  l3)
  is-extension-dependent-lift-family-of-elements f =
    ev-dependent-lift-family-of-elements a f ~ b

  extension-dependent-lift-family-of-elements : UU (l1  l2  l3)
  extension-dependent-lift-family-of-elements =
    Σ ((i : I) (x : A i)  B i x) is-extension-dependent-lift-family-of-elements

module _
  {l1 l2 l3 : Level} {I : UU l1} {A : I  UU l2} {B : (i : I)  A i  UU l3}
  {a : (i : I)  A i} {b : dependent-lift-family-of-elements B a}
  (f : extension-dependent-lift-family-of-elements B a b)
  where

  family-of-elements-extension-dependent-lift-family-of-elements :
    (i : I) (x : A i)  B i x
  family-of-elements-extension-dependent-lift-family-of-elements = pr1 f

  is-extension-extension-dependent-lift-family-of-elements :
    is-extension-dependent-lift-family-of-elements B a b
      ( family-of-elements-extension-dependent-lift-family-of-elements)
  is-extension-extension-dependent-lift-family-of-elements = pr2 f

Extensions of lifts of families of elements

module _
  {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} (B : A  UU l3)
  (a : I  A) (b : lift-family-of-elements B a)
  where

  is-extension-lift-family-of-elements : (f : (x : A)  B x)  UU (l1  l3)
  is-extension-lift-family-of-elements f = ev-lift-family-of-elements a f ~ b

  extension-lift-family-of-elements : UU (l1  l2  l3)
  extension-lift-family-of-elements =
    Σ ((x : A)  B x) is-extension-lift-family-of-elements

module _
  {l1 l2 l3 : Level} {I : UU l1} {A : UU l2} {B : A  UU l3}
  {a : I  A} {b : lift-family-of-elements B a}
  (f : extension-lift-family-of-elements B a b)
  where

  family-of-elements-extension-lift-family-of-elements : (x : A)  B x
  family-of-elements-extension-lift-family-of-elements = pr1 f

  is-extension-extension-lift-family-of-elements :
    is-extension-lift-family-of-elements B a b
      ( family-of-elements-extension-lift-family-of-elements)
  is-extension-extension-lift-family-of-elements = pr2 f

Identity extensions of dependent lifts of families of elements

module _
  {l1 l2 : Level} {I : UU l1} {A : I  UU l2} (a : (i : I)  A i)
  where

  id-extension-dependent-lift-family-of-elements :
    extension-dependent-lift-family-of-elements  i _  A i) a a
  pr1 id-extension-dependent-lift-family-of-elements i = id
  pr2 id-extension-dependent-lift-family-of-elements = refl-htpy

Identity extensions of lifts of families of elements

module _
  {l1 l2 : Level} {I : UU l1} {A : UU l2} (a : I  A)
  where

  id-extension-lift-family-of-elements :
    extension-lift-family-of-elements  _  A) a a
  pr1 id-extension-lift-family-of-elements = id
  pr2 id-extension-lift-family-of-elements = refl-htpy

Composition of extensions of dependent lifts of families of elements

Consider three type families A, B, and C over a type I equipped with sections

  a : (i : I) → A i
  b : (i : I) → B i
  c : (i : I) → C i.

Furthermore, suppose that g is an extension of c along b, and suppose that f is an extension of b along a. In other words, g consists of a family of maps

  g : (i : I) → B i → C i

equipped with a homotopy witnessing that g i (b i) = c i for all i : I, and f consists of a family of maps

  f : (i : I) → A i → B i

equipped with a homotopy witnessing that f i (a i) = b i for all i : I. Then we can compose g and f fiberwise, resulting in a family of maps

  λ i → g i ∘ f i : (i : I) → A i → C i

equipped with a homotopy witnessing that g i (f i (a i)) = c i for all i : I. In other words, extensions of c along b can be composed with extensions of b along a to obtain extensions of c along a.

module _
  {l1 l2 l3 l4 : Level} {I : UU l1}
  {A : I  UU l2} {B : I  UU l3} {C : I  UU l4}
  {a : (i : I)  A i} {b : (i : I)  B i} {c : (i : I)  C i}
  (g : extension-dependent-lift-family-of-elements  i _  C i) b c)
  (f : extension-dependent-lift-family-of-elements  i _  B i) a b)
  where

  family-of-elements-comp-extension-dependent-lift-family-of-elements :
    (i : I)  A i  C i
  family-of-elements-comp-extension-dependent-lift-family-of-elements i =
    family-of-elements-extension-dependent-lift-family-of-elements g i 
    family-of-elements-extension-dependent-lift-family-of-elements f i

  is-extension-comp-extension-dependent-lift-family-of-elements :
    is-extension-dependent-lift-family-of-elements
      ( λ i _  C i)
      ( a)
      ( c)
      ( family-of-elements-comp-extension-dependent-lift-family-of-elements)
  is-extension-comp-extension-dependent-lift-family-of-elements i =
    ( ap
      ( family-of-elements-extension-dependent-lift-family-of-elements g i)
      ( is-extension-extension-dependent-lift-family-of-elements f i)) 
    ( is-extension-extension-dependent-lift-family-of-elements g i)

  comp-extension-dependent-lift-family-of-elements :
    extension-dependent-lift-family-of-elements  i _  C i) a c
  pr1 comp-extension-dependent-lift-family-of-elements =
    family-of-elements-comp-extension-dependent-lift-family-of-elements
  pr2 comp-extension-dependent-lift-family-of-elements =
    is-extension-comp-extension-dependent-lift-family-of-elements

Composition of extensions of lifts of families of elements

Consider three types A, B, and C equipped with maps

  a : I → A
  b : I → B
  c : I → C.

Furthermore, suppose that g is an extension of c along b, and suppose that f is an extension of b along a. In other words, we assume a commuting diagram

        I
      / | \
    a/  |  \c
    /   |b  \
   V    V    V
  A --> B --> C
     f     g

The composite g ∘ f is then an extension of c along `a.

module _
  {l1 l2 l3 l4 : Level} {I : UU l1}
  {A : UU l2} {B : UU l3} {C : UU l4}
  {a : I  A} {b : I  B} {c : I  C}
  (g : extension-lift-family-of-elements  _  C) b c)
  (f : extension-lift-family-of-elements  _  B) a b)
  where

  map-comp-extension-lift-family-of-elements : A  C
  map-comp-extension-lift-family-of-elements =
    family-of-elements-extension-lift-family-of-elements g 
    family-of-elements-extension-lift-family-of-elements f

  is-extension-comp-extension-lift-family-of-elements :
    is-extension-lift-family-of-elements
      ( λ _  C)
      ( a)
      ( c)
      ( map-comp-extension-lift-family-of-elements)
  is-extension-comp-extension-lift-family-of-elements x =
    ( ap
      ( family-of-elements-extension-lift-family-of-elements g)
      ( is-extension-extension-lift-family-of-elements f x)) 
    ( is-extension-extension-lift-family-of-elements g x)

  comp-extension-lift-family-of-elements :
    extension-lift-family-of-elements  _  C) a c
  pr1 comp-extension-lift-family-of-elements =
    map-comp-extension-lift-family-of-elements
  pr2 comp-extension-lift-family-of-elements =
    is-extension-comp-extension-lift-family-of-elements

See also

Recent changes