Kernels of homomorphisms between abelian groups
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module group-theory.kernels-homomorphisms-abelian-groups where
Imports
open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.embeddings-abelian-groups open import group-theory.homomorphisms-abelian-groups open import group-theory.kernels-homomorphisms-groups open import group-theory.subgroups-abelian-groups open import group-theory.subsets-abelian-groups
Idea
The kernel of a
group homomorphism f : A → B
between abelian groups A
and B
is the
subgroup of A
consisting of those
elements x : A
such that f x = zero-Ab B
.
Definitions
Kernels of group homomorphisms between abelian groups
module _ {l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) where subset-kernel-hom-Ab : subset-Ab l2 A subset-kernel-hom-Ab = subset-kernel-hom-Group (group-Ab A) (group-Ab B) f is-in-kernel-hom-Ab : type-Ab A → UU l2 is-in-kernel-hom-Ab = is-in-kernel-hom-Group (group-Ab A) (group-Ab B) f contains-zero-subset-kernel-hom-Ab : is-in-kernel-hom-Ab (zero-Ab A) contains-zero-subset-kernel-hom-Ab = contains-unit-subset-kernel-hom-Group (group-Ab A) (group-Ab B) f is-closed-under-addition-subset-kernel-hom-Ab : is-closed-under-addition-subset-Ab A subset-kernel-hom-Ab is-closed-under-addition-subset-kernel-hom-Ab = is-closed-under-multiplication-subset-kernel-hom-Group ( group-Ab A) ( group-Ab B) ( f) is-closed-under-negatives-subset-kernel-hom-Ab : is-closed-under-negatives-subset-Ab A subset-kernel-hom-Ab is-closed-under-negatives-subset-kernel-hom-Ab = is-closed-under-inverses-subset-kernel-hom-Group ( group-Ab A) ( group-Ab B) ( f) kernel-hom-Ab : Subgroup-Ab l2 A kernel-hom-Ab = subgroup-kernel-hom-Group (group-Ab A) (group-Ab B) f ab-kernel-hom-Ab : Ab (l1 ⊔ l2) ab-kernel-hom-Ab = ab-Subgroup-Ab A kernel-hom-Ab inclusion-kernel-hom-Ab : hom-Ab ab-kernel-hom-Ab A inclusion-kernel-hom-Ab = inclusion-kernel-hom-Group (group-Ab A) (group-Ab B) f is-emb-inclusion-kernel-hom-Ab : is-emb-hom-Ab ab-kernel-hom-Ab A inclusion-kernel-hom-Ab is-emb-inclusion-kernel-hom-Ab = is-emb-inclusion-kernel-hom-Group (group-Ab A) (group-Ab B) f emb-inclusion-kernel-hom-Ab : emb-Ab ab-kernel-hom-Ab A emb-inclusion-kernel-hom-Ab = emb-inclusion-kernel-hom-Group (group-Ab A) (group-Ab B) f
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).