Binary transport
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2023-01-28.
Last modified on 2025-01-07.
module foundation.binary-transport where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.transport-along-identifications
Idea
Given a binary relation B : A → A → UU
and identifications p : x = x'
and
q : y = y'
in A
, the binary transport of B
is an operation
binary-tr B p q : B x y → B x' y'
Definition
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A → B → UU l3) {x x' : A} {y y' : B} where binary-tr : (p : x = x') (q : y = y') → C x y → C x' y' binary-tr p q c = tr (C x') q (tr (λ u → C u y) p c) is-equiv-binary-tr : (p : x = x') (q : y = y') → is-equiv (binary-tr p q) is-equiv-binary-tr refl refl = is-equiv-id equiv-binary-tr : (p : x = x') (q : y = y') → C x y ≃ C x' y' pr1 (equiv-binary-tr p q) = binary-tr p q pr2 (equiv-binary-tr p q) = is-equiv-binary-tr p q compute-binary-tr : (p : x = x') (q : y = y') (u : C x y) → tr (λ a → C a y') p (tr (C x) q u) = binary-tr p q u compute-binary-tr refl refl u = refl compute-binary-tr' : (p : x = x') (q : y = y') (u : C x y) → tr (C x') q (tr (λ a → C a y) p u) = binary-tr p q u compute-binary-tr' refl refl u = refl
Properties
Transposing binary path-overs
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A → B → UU l3) where transpose-binary-path-over : {x1 x2 : A} (p : x1 = x2) {y1 y2 : B} (q : y1 = y2) {c1 : C x1 y1} {c2 : C x2 y2} → c2 = binary-tr C p q c1 → binary-tr C (inv p) (inv q) c2 = c1 transpose-binary-path-over refl refl = id transpose-binary-path-over' : {x1 x2 : A} (p : x1 = x2) {y1 y2 : B} (q : y1 = y2) {c1 : C x1 y1} {c2 : C x2 y2} → c1 = binary-tr C (inv p) (inv q) c2 → binary-tr C p q c1 = c2 transpose-binary-path-over' refl refl = id
Binary transport along concatenated paths
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A → B → UU l3) where binary-tr-concat : {x1 x2 x3 : A} (p : x1 = x2) (p' : x2 = x3) {y1 y2 y3 : B} (q : y1 = y2) (q' : y2 = y3) → (c : C x1 y1) → binary-tr C (p ∙ p') (q ∙ q') c = binary-tr C p' q' (binary-tr C p q c) binary-tr-concat refl refl refl refl c = refl
Binary transport along paths of the form ap f p
and ap g q
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : A → C → UU l5} (F : B → D → UU l6) {f : A → B} {g : C → D} (h : (a : A) (c : C) → E a c → F (f a) (g c)) where binary-tr-ap : {x x' : A} (p : x = x') {y y' : C} (q : y = y') → {u : E x y} {v : E x' y'} (r : binary-tr E p q u = v) → binary-tr F (ap f p) (ap g q) (h x y u) = h x' y' v binary-tr-ap refl refl refl = refl
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).