The decidable total order of rational numbers
Content created by Fredrik Bakke and malarbol.
Created on 2024-03-28.
Last modified on 2024-03-28.
module elementary-number-theory.decidable-total-order-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import foundation.dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import order-theory.decidable-total-orders open import order-theory.total-orders
Idea
The type of rational numbers equipped with its standard ordering relation forms a decidable total order.
Definition
is-total-leq-ℚ : is-total-Poset ℚ-Poset is-total-leq-ℚ x y = unit-trunc-Prop (linear-leq-ℚ x y) ℚ-Total-Order : Total-Order lzero lzero pr1 ℚ-Total-Order = ℚ-Poset pr2 ℚ-Total-Order = is-total-leq-ℚ ℚ-Decidable-Total-Order : Decidable-Total-Order lzero lzero pr1 ℚ-Decidable-Total-Order = ℚ-Poset pr1 (pr2 ℚ-Decidable-Total-Order) = is-total-leq-ℚ pr2 (pr2 ℚ-Decidable-Total-Order) = is-decidable-leq-ℚ
Recent changes
- 2024-03-28. malarbol and Fredrik Bakke. Refactoring positive integers (#1059).