Real sequences approximating zero
Content created by Louis Wasserman.
Created on 2025-11-10.
Last modified on 2025-11-11.
{-# OPTIONS --lossy-unification #-} module real-numbers.real-sequences-approximating-zero where
Imports
open import elementary-number-theory.absolute-value-rational-numbers open import elementary-number-theory.distance-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import lists.sequences open import logic.functoriality-existential-quantification open import metric-spaces.limits-of-sequences-metric-spaces open import metric-spaces.metric-space-of-rational-numbers open import metric-spaces.rational-sequences-approximating-zero open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.limits-sequences-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
A sequence of real numbers is an approximation of zero¶ if it converges to 0 in the standard metric space of real numbers.
Definition
is-zero-limit-prop-sequence-ℝ : {l : Level} → sequence (ℝ l) → Prop l is-zero-limit-prop-sequence-ℝ {l} σ = is-limit-prop-sequence-ℝ σ (raise-ℝ l zero-ℝ) is-zero-limit-sequence-ℝ : {l : Level} → sequence (ℝ l) → UU l is-zero-limit-sequence-ℝ σ = type-Prop (is-zero-limit-prop-sequence-ℝ σ)
Properties
If the absolute value of a sequence of reals is bounded by a rational approximation of zero, the sequence of reals is an approximation of zero
abstract is-zero-limit-sequence-leq-abs-rational-zero-limit-sequence-ℝ : {l : Level} (a : sequence (ℝ l)) (b : zero-limit-sequence-ℚ) → ((n : ℕ) → leq-ℝ (abs-ℝ (a n)) (real-ℚ (seq-zero-limit-sequence-ℚ b n))) → is-zero-limit-sequence-ℝ a is-zero-limit-sequence-leq-abs-rational-zero-limit-sequence-ℝ {l} a (b , lim-b=0) H = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in map-tot-exists ( λ μ is-mod-μ ε n με≤n → neighborhood-dist-ℝ ( ε) ( a n) ( raise-ℝ l zero-ℝ) ( chain-of-inequalities dist-ℝ (a n) (raise-ℝ l zero-ℝ) ≤ dist-ℝ (a n) zero-ℝ by leq-sim-ℝ ( preserves-dist-right-sim-ℝ ( symmetric-sim-ℝ (sim-raise-ℝ l zero-ℝ))) ≤ abs-ℝ (a n) by leq-eq-ℝ (right-zero-law-dist-ℝ (a n)) ≤ real-ℚ (b n) by H n ≤ real-ℚ (rational-abs-ℚ (b n)) by preserves-leq-real-ℚ (leq-abs-ℚ (b n)) ≤ real-ℚ (rational-dist-ℚ (b n) zero-ℚ) by leq-eq-ℝ ( ap ( real-ℚ ∘ rational-ℚ⁰⁺) ( inv (right-zero-law-dist-ℚ (b n)))) ≤ real-ℚ⁺ ε by preserves-leq-real-ℚ ( leq-dist-neighborhood-ℚ ε _ _ (is-mod-μ ε n με≤n)))) ( lim-b=0)
Recent changes
- 2025-11-11. Fredrik Bakke. chore: Fix website (#1687).
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).