Descent for dependent pair types
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-07-20.
Last modified on 2026-02-02.
module foundation.descent-dependent-pair-types where
Imports
open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.functoriality-fibers-of-maps open import foundation.logical-equivalences open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.pullbacks
Idea
The
descent property¶
of dependent pair types states that, given
a map h : Y → X and a family of maps f : (i : I) → A i → X together with a
family of cones
B i -----> Y
| |
| c i | h
∨ ∨
A i -----> X
f i
for every i, then the family is a family of
pullback cones if and only if the total cone
Σ I B -----> Y
| |
| Σc | h
∨ ∨
Σ I A -----> X
rec-Σ f
is a pullback cone.
This descent property appears as Theorem 2.2 in [CR21].
Theorem
module _ {l1 l2 l3 l4 l5 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} {X : UU l4} {Y : UU l5} (f : (i : I) → A i → X) (h : Y → X) (c : (i : I) → cone (f i) h (B i)) where cone-descent-Σ : cone (rec-Σ f) h (Σ I B) cone-descent-Σ = triple ( tot (λ i → vertical-map-cone (f i) h (c i))) ( ind-Σ (λ i → horizontal-map-cone (f i) h (c i))) ( ind-Σ (λ i → coherence-square-cone (f i) h (c i))) triangle-descent-Σ : (i : I) (a : A i) → ( map-fiber-vertical-map-cone (f i) h (c i) a) ~ ( map-fiber-vertical-map-cone (rec-Σ f) h cone-descent-Σ (i , a)) ∘ ( map-inv-compute-fiber-tot (λ i → vertical-map-cone (f i) h (c i)) (i , a)) triangle-descent-Σ i .(vertical-map-cone (f i) h (c i) a') (a' , refl) = refl abstract descent-Σ : ((i : I) → is-pullback (f i) h (c i)) → is-pullback (rec-Σ f) h cone-descent-Σ descent-Σ is-pb-c = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone ( rec-Σ f) ( h) ( cone-descent-Σ) ( ind-Σ ( λ i a → is-equiv-right-map-triangle ( map-fiber-vertical-map-cone (f i) h (c i) a) ( map-fiber-vertical-map-cone (rec-Σ f) h cone-descent-Σ (i , a)) ( map-inv-compute-fiber-tot ( λ i → vertical-map-cone (f i) h (c i)) ( i , a)) ( triangle-descent-Σ i a) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback (f i) h (c i) (is-pb-c i) a) ( is-equiv-map-inv-compute-fiber-tot ( λ i → vertical-map-cone (f i) h (c i)) ( i , a)))) abstract descent-Σ' : is-pullback (rec-Σ f) h cone-descent-Σ → ((i : I) → is-pullback (f i) h (c i)) descent-Σ' is-pb-dsq i = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone (f i) h (c i) ( λ a → is-equiv-left-map-triangle ( map-fiber-vertical-map-cone (f i) h (c i) a) ( map-fiber-vertical-map-cone (rec-Σ f) h cone-descent-Σ (i , a)) ( map-inv-compute-fiber-tot ( λ i → vertical-map-cone (f i) h (c i)) ( i , a)) ( triangle-descent-Σ i a) ( is-equiv-map-inv-compute-fiber-tot ( λ i → vertical-map-cone (f i) h (c i)) ( i , a)) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback ( rec-Σ f) ( h) ( cone-descent-Σ) ( is-pb-dsq) ( i , a))) iff-descent-Σ : ((i : I) → is-pullback (f i) h (c i)) ↔ is-pullback (rec-Σ f) h cone-descent-Σ iff-descent-Σ = (descent-Σ , descent-Σ')
References
- [CR21]
- Felix Cherubini and Egbert Rijke. Modal descent. Mathematical Structures in Computer Science, 31(4):363–391, 04 2021. arXiv:2003.09713, doi:10.1017/S0960129520000201.
Table of descent properties
| Concept | File |
|---|---|
| Descent for coproduct types | foundation.descent-coproduct-types |
| Descent for dependent pair types | foundation.descent-dependent-pair-types |
| Descent for empty types | foundation.descent-empty-types |
| Descent for equivalences | foundation.descent-equivalences |
| Descent for pushouts | synthetic-homotopy-theory.descent-pushouts |
| Descent for sequential colimits | synthetic-homotopy-theory.descent-sequential-colimits |
| Descent for surjective maps | foundation.descent-surjective-maps |
| Descent for the circle | synthetic-homotopy-theory.descent-circle |
Recent changes
- 2026-02-02. Fredrik Bakke. Cleanup of descent properties (#1730).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2024-01-25. Fredrik Bakke. Basic properties of orthogonal maps (#979).
- 2023-11-09. Egbert Rijke and Fredrik Bakke. Refactoring of retractions, sections, and equivalences, and adding the 6-for-2 property of equivalences (#903).
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).