Maps between noncoherent ω-precategories
Content created by Fredrik Bakke.
Created on 2025-02-04.
Last modified on 2025-02-04.
{-# OPTIONS --guardedness #-} module wild-category-theory.maps-noncoherent-omega-precategories where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import globular-types.globular-maps open import globular-types.globular-types open import wild-category-theory.noncoherent-omega-precategories
Idea
A
map¶
f
between
noncoherent ω-precategories
𝒜
and ℬ
is a globular map between their
underlying globular types. More
specifically, a map F
between noncoherent ω-precategories consists of a map on
objects F₀ : obj 𝒜 → obj ℬ
, and for every pair of -morphisms f
and g
, a
map of -morphisms
Fₙ₊₁ : (𝑛+1)-hom 𝒞 f g → (𝑛+1)-hom 𝒟 (Fₙ f) (Fₙ g).
A map between noncoherent ω-precategories does not have to preserve the identities or composition in any shape or form, and is the least structured notion of a “morphism” between noncoherent ω-precategories. For a notion of “morphism” between noncoherent ω-precategories that in one sense preserves this additional structure, see colax functors between noncoherent ω-precategories.
Definitions
Maps between noncoherent ω-precategories
map-Noncoherent-ω-Precategory : {l1 l2 l3 l4 : Level} (𝒜 : Noncoherent-ω-Precategory l1 l2) (ℬ : Noncoherent-ω-Precategory l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) map-Noncoherent-ω-Precategory 𝒜 ℬ = globular-map ( globular-type-Noncoherent-ω-Precategory 𝒜) ( globular-type-Noncoherent-ω-Precategory ℬ) module _ {l1 l2 l3 l4 : Level} (𝒜 : Noncoherent-ω-Precategory l1 l2) (ℬ : Noncoherent-ω-Precategory l3 l4) (F : map-Noncoherent-ω-Precategory 𝒜 ℬ) where obj-map-Noncoherent-ω-Precategory : obj-Noncoherent-ω-Precategory 𝒜 → obj-Noncoherent-ω-Precategory ℬ obj-map-Noncoherent-ω-Precategory = 0-cell-globular-map F hom-globular-map-map-Noncoherent-ω-Precategory : {x y : obj-Noncoherent-ω-Precategory 𝒜} → globular-map ( hom-globular-type-Noncoherent-ω-Precategory 𝒜 x y) ( hom-globular-type-Noncoherent-ω-Precategory ℬ ( obj-map-Noncoherent-ω-Precategory x) ( obj-map-Noncoherent-ω-Precategory y)) hom-globular-map-map-Noncoherent-ω-Precategory = 1-cell-globular-map-globular-map F hom-map-Noncoherent-ω-Precategory : {x y : obj-Noncoherent-ω-Precategory 𝒜} → hom-Noncoherent-ω-Precategory 𝒜 x y → hom-Noncoherent-ω-Precategory ℬ ( obj-map-Noncoherent-ω-Precategory x) ( obj-map-Noncoherent-ω-Precategory y) hom-map-Noncoherent-ω-Precategory = 0-cell-globular-map ( hom-globular-map-map-Noncoherent-ω-Precategory) 2-hom-map-Noncoherent-ω-Precategory : {x y : obj-Noncoherent-ω-Precategory 𝒜} {f g : hom-Noncoherent-ω-Precategory 𝒜 x y} → 2-hom-Noncoherent-ω-Precategory 𝒜 f g → 2-hom-Noncoherent-ω-Precategory ℬ ( hom-map-Noncoherent-ω-Precategory f) ( hom-map-Noncoherent-ω-Precategory g) 2-hom-map-Noncoherent-ω-Precategory = 1-cell-globular-map ( hom-globular-map-map-Noncoherent-ω-Precategory) hom-noncoherent-ω-precategory-map-Noncoherent-ω-Precategory : (x y : obj-Noncoherent-ω-Precategory 𝒜) → map-Noncoherent-ω-Precategory ( hom-noncoherent-ω-precategory-Noncoherent-ω-Precategory ( 𝒜) ( x) ( y)) ( hom-noncoherent-ω-precategory-Noncoherent-ω-Precategory ( ℬ) ( obj-map-Noncoherent-ω-Precategory x) ( obj-map-Noncoherent-ω-Precategory y)) hom-noncoherent-ω-precategory-map-Noncoherent-ω-Precategory x y = 1-cell-globular-map-globular-map F
The identity map on a noncoherent ω-precategory
module _ {l1 l2 : Level} (𝒜 : Noncoherent-ω-Precategory l1 l2) where id-map-Noncoherent-ω-Precategory : map-Noncoherent-ω-Precategory 𝒜 𝒜 id-map-Noncoherent-ω-Precategory = id-globular-map _
Composition of maps between noncoherent ω-precategories
module _ {l1 l2 l3 l4 l5 l6 : Level} (𝒜 : Noncoherent-ω-Precategory l1 l2) (ℬ : Noncoherent-ω-Precategory l3 l4) (𝒞 : Noncoherent-ω-Precategory l5 l6) (G : map-Noncoherent-ω-Precategory ℬ 𝒞) (F : map-Noncoherent-ω-Precategory 𝒜 ℬ) where comp-map-Noncoherent-ω-Precategory : map-Noncoherent-ω-Precategory 𝒜 𝒞 comp-map-Noncoherent-ω-Precategory = comp-globular-map G F
Recent changes
- 2025-02-04. Fredrik Bakke. Rename wild higher categories (#1233).