Maps between noncoherent ω-precategories

Content created by Fredrik Bakke.

Created on 2025-02-04.
Last modified on 2025-02-04.

{-# OPTIONS --guardedness #-}

module wild-category-theory.maps-noncoherent-omega-precategories where
Imports
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.universe-levels

open import globular-types.globular-maps
open import globular-types.globular-types

open import wild-category-theory.noncoherent-omega-precategories

Idea

A map f between noncoherent ω-precategories 𝒜 and is a globular map between their underlying globular types. More specifically, a map F between noncoherent ω-precategories consists of a map on objects F₀ : obj 𝒜 → obj ℬ, and for every pair of -morphisms f and g, a map of -morphisms

  Fₙ₊₁ : (𝑛+1)-hom 𝒞 f g → (𝑛+1)-hom 𝒟 (Fₙ f) (Fₙ g).

A map between noncoherent ω-precategories does not have to preserve the identities or composition in any shape or form, and is the least structured notion of a “morphism” between noncoherent ω-precategories. For a notion of “morphism” between noncoherent ω-precategories that in one sense preserves this additional structure, see colax functors between noncoherent ω-precategories.

Definitions

Maps between noncoherent ω-precategories

map-Noncoherent-ω-Precategory :
  {l1 l2 l3 l4 : Level}
  (𝒜 : Noncoherent-ω-Precategory l1 l2)
  ( : Noncoherent-ω-Precategory l3 l4)  UU (l1  l2  l3  l4)
map-Noncoherent-ω-Precategory 𝒜  =
  globular-map
    ( globular-type-Noncoherent-ω-Precategory 𝒜)
    ( globular-type-Noncoherent-ω-Precategory )

module _
  {l1 l2 l3 l4 : Level}
  (𝒜 : Noncoherent-ω-Precategory l1 l2)
  ( : Noncoherent-ω-Precategory l3 l4)
  (F : map-Noncoherent-ω-Precategory 𝒜 )
  where

  obj-map-Noncoherent-ω-Precategory :
    obj-Noncoherent-ω-Precategory 𝒜 
    obj-Noncoherent-ω-Precategory 
  obj-map-Noncoherent-ω-Precategory =
    0-cell-globular-map F

  hom-globular-map-map-Noncoherent-ω-Precategory :
    {x y : obj-Noncoherent-ω-Precategory 𝒜} 
    globular-map
      ( hom-globular-type-Noncoherent-ω-Precategory 𝒜 x y)
      ( hom-globular-type-Noncoherent-ω-Precategory 
        ( obj-map-Noncoherent-ω-Precategory x)
        ( obj-map-Noncoherent-ω-Precategory y))
  hom-globular-map-map-Noncoherent-ω-Precategory =
    1-cell-globular-map-globular-map F

  hom-map-Noncoherent-ω-Precategory :
    {x y : obj-Noncoherent-ω-Precategory 𝒜} 
    hom-Noncoherent-ω-Precategory 𝒜 x y 
    hom-Noncoherent-ω-Precategory 
      ( obj-map-Noncoherent-ω-Precategory x)
      ( obj-map-Noncoherent-ω-Precategory y)
  hom-map-Noncoherent-ω-Precategory =
    0-cell-globular-map
      ( hom-globular-map-map-Noncoherent-ω-Precategory)

  2-hom-map-Noncoherent-ω-Precategory :
    {x y : obj-Noncoherent-ω-Precategory 𝒜}
    {f g : hom-Noncoherent-ω-Precategory 𝒜 x y} 
    2-hom-Noncoherent-ω-Precategory 𝒜 f g 
    2-hom-Noncoherent-ω-Precategory 
      ( hom-map-Noncoherent-ω-Precategory f)
      ( hom-map-Noncoherent-ω-Precategory g)
  2-hom-map-Noncoherent-ω-Precategory =
    1-cell-globular-map
      ( hom-globular-map-map-Noncoherent-ω-Precategory)

  hom-noncoherent-ω-precategory-map-Noncoherent-ω-Precategory :
    (x y : obj-Noncoherent-ω-Precategory 𝒜) 
    map-Noncoherent-ω-Precategory
      ( hom-noncoherent-ω-precategory-Noncoherent-ω-Precategory
        ( 𝒜)
        ( x)
        ( y))
      ( hom-noncoherent-ω-precategory-Noncoherent-ω-Precategory
        ( )
        ( obj-map-Noncoherent-ω-Precategory x)
        ( obj-map-Noncoherent-ω-Precategory y))
  hom-noncoherent-ω-precategory-map-Noncoherent-ω-Precategory
    x y =
    1-cell-globular-map-globular-map F

The identity map on a noncoherent ω-precategory

module _
  {l1 l2 : Level} (𝒜 : Noncoherent-ω-Precategory l1 l2)
  where

  id-map-Noncoherent-ω-Precategory :
    map-Noncoherent-ω-Precategory 𝒜 𝒜
  id-map-Noncoherent-ω-Precategory =
    id-globular-map _

Composition of maps between noncoherent ω-precategories

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (𝒜 : Noncoherent-ω-Precategory l1 l2)
  ( : Noncoherent-ω-Precategory l3 l4)
  (𝒞 : Noncoherent-ω-Precategory l5 l6)
  (G : map-Noncoherent-ω-Precategory  𝒞)
  (F : map-Noncoherent-ω-Precategory 𝒜 )
  where

  comp-map-Noncoherent-ω-Precategory :
    map-Noncoherent-ω-Precategory 𝒜 𝒞
  comp-map-Noncoherent-ω-Precategory =
    comp-globular-map G F

Recent changes