Cartesian products of subtypes
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-09-11.
module foundation.cartesian-products-subtypes where
Imports
open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.subtypes open import foundation.universe-levels
Idea
Given types A
and B
and subtypes S ⊆ A
and T ⊆ B
, a pair
(a , b) : A × B
is in the
Cartesian product¶
of S
and T
if a ∈ S
and b ∈ T
.
Definition
product-subtype : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} → subtype l3 A → subtype l4 B → subtype (l3 ⊔ l4) (A × B) product-subtype P Q (a , b) = P a ∧ Q b type-product-subtype : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} → subtype l3 A → subtype l4 B → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) type-product-subtype P Q = type-subtype (product-subtype P Q)
Properties
The type of the Cartesian product of subtypes is equivalent to the Cartesian products of their types
equiv-product-subtype : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} → (S : subtype l3 A) (T : subtype l4 B) → type-product-subtype S T ≃ (type-subtype S × type-subtype T) equiv-product-subtype S T = ( (λ ((s , t) , s∈S , t∈T) → ((s , s∈S) , (t , t∈T))) , is-equiv-is-invertible ( λ ((s , s∈S) , (t , t∈T)) → ((s , t) , s∈S , t∈T)) ( λ _ → refl) ( λ _ → refl))
External links
- Cartesian product at Wikidata
Recent changes
- 2025-09-11. Louis Wasserman. Inhabited totally bounded subspaces of metric spaces (#1542).
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).