Saturated congruence relations on monoids

Content created by Egbert Rijke, Fredrik Bakke, Julian KG, fernabnor and louismntnu.

Created on 2023-03-26.
Last modified on 2023-11-24.

module group-theory.saturated-congruence-relations-monoids where
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.equivalence-relations
open import foundation.equivalences
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.subtype-identity-principle
open import foundation.torsorial-type-families
open import foundation.universe-levels

open import group-theory.congruence-relations-monoids
open import group-theory.monoids


For any monoid M, the type of normal submonoids is a retract of the type of congruence relations on M. A congruence relation on M is said to be saturated if it is in the image of the inclusion of the normal submonoids of M into the congruence relations on M.


module _
  {l1 l2 : Level} (M : Monoid l1) (R : congruence-Monoid l2 M)

  is-saturated-prop-congruence-Monoid : Prop (l1  l2)
  is-saturated-prop-congruence-Monoid =
      ( type-Monoid M)
      ( λ x 
          ( type-Monoid M)
          ( λ y 
              ( (u v : type-Monoid M) 
                ( sim-congruence-Monoid M R
                  ( mul-Monoid M (mul-Monoid M u x) v)
                  ( unit-Monoid M)) 
                ( sim-congruence-Monoid M R
                  ( mul-Monoid M (mul-Monoid M u y) v)
                  ( unit-Monoid M)))
              ( prop-congruence-Monoid M R x y)))

  is-saturated-congruence-Monoid : UU (l1  l2)
  is-saturated-congruence-Monoid = type-Prop is-saturated-prop-congruence-Monoid

  is-prop-is-saturated-congruence-Monoid :
    is-prop is-saturated-congruence-Monoid
  is-prop-is-saturated-congruence-Monoid =
    is-prop-type-Prop is-saturated-prop-congruence-Monoid

saturated-congruence-Monoid :
  {l1 : Level} (l2 : Level) (M : Monoid l1)  UU (l1  lsuc l2)
saturated-congruence-Monoid l2 M =
  Σ ( congruence-Monoid l2 M)
    ( is-saturated-congruence-Monoid M)

module _
  {l1 l2 : Level} (M : Monoid l1) (R : saturated-congruence-Monoid l2 M)

  congruence-saturated-congruence-Monoid : congruence-Monoid l2 M
  congruence-saturated-congruence-Monoid = pr1 R

  is-saturated-saturated-congruence-Monoid :
    is-saturated-congruence-Monoid M congruence-saturated-congruence-Monoid
  is-saturated-saturated-congruence-Monoid = pr2 R

  equivalence-relation-saturated-congruence-Monoid :
    equivalence-relation l2 (type-Monoid M)
  equivalence-relation-saturated-congruence-Monoid =
    equivalence-relation-congruence-Monoid M
      ( congruence-saturated-congruence-Monoid)

  prop-saturated-congruence-Monoid : Relation-Prop l2 (type-Monoid M)
  prop-saturated-congruence-Monoid =
    prop-congruence-Monoid M congruence-saturated-congruence-Monoid

  sim-saturated-congruence-Monoid : (x y : type-Monoid M)  UU l2
  sim-saturated-congruence-Monoid =
    sim-congruence-Monoid M congruence-saturated-congruence-Monoid

  is-prop-sim-saturated-congruence-Monoid :
    (x y : type-Monoid M)  is-prop (sim-saturated-congruence-Monoid x y)
  is-prop-sim-saturated-congruence-Monoid =
    is-prop-sim-congruence-Monoid M congruence-saturated-congruence-Monoid

  concatenate-sim-eq-saturated-congruence-Monoid :
    {x y z : type-Monoid M} 
    sim-saturated-congruence-Monoid x y  y  z 
    sim-saturated-congruence-Monoid x z
  concatenate-sim-eq-saturated-congruence-Monoid =
    concatenate-sim-eq-congruence-Monoid M

  concatenate-eq-sim-saturated-congruence-Monoid :
    {x y z : type-Monoid M} 
    x  y  sim-saturated-congruence-Monoid y z 
    sim-saturated-congruence-Monoid x z
  concatenate-eq-sim-saturated-congruence-Monoid =
    concatenate-eq-sim-congruence-Monoid M

  concatenate-eq-sim-eq-saturated-congruence-Monoid :
    {x y z w : type-Monoid M} 
    x  y  sim-saturated-congruence-Monoid y z 
    z  w  sim-saturated-congruence-Monoid x w
  concatenate-eq-sim-eq-saturated-congruence-Monoid =
    concatenate-eq-sim-eq-congruence-Monoid M

  refl-saturated-congruence-Monoid :
    is-reflexive sim-saturated-congruence-Monoid
  refl-saturated-congruence-Monoid =
    refl-congruence-Monoid M congruence-saturated-congruence-Monoid

  symmetric-saturated-congruence-Monoid :
    is-symmetric sim-saturated-congruence-Monoid
  symmetric-saturated-congruence-Monoid =
    symmetric-congruence-Monoid M congruence-saturated-congruence-Monoid

  equiv-symmetric-saturated-congruence-Monoid :
    (x y : type-Monoid M) 
    sim-saturated-congruence-Monoid x y  sim-saturated-congruence-Monoid y x
  equiv-symmetric-saturated-congruence-Monoid =
    equiv-symmetric-congruence-Monoid M congruence-saturated-congruence-Monoid

  transitive-saturated-congruence-Monoid :
    is-transitive sim-saturated-congruence-Monoid
  transitive-saturated-congruence-Monoid =
    transitive-congruence-Monoid M congruence-saturated-congruence-Monoid

  mul-saturated-congruence-Monoid :
    is-congruence-Monoid M equivalence-relation-saturated-congruence-Monoid
  mul-saturated-congruence-Monoid =
    mul-congruence-Monoid M congruence-saturated-congruence-Monoid


Extensionality of the type of saturated congruence relations on a monoid

relate-same-elements-saturated-congruence-Monoid :
  {l1 l2 l3 : Level} (M : Monoid l1)
  (R : saturated-congruence-Monoid l2 M)
  (S : saturated-congruence-Monoid l3 M)  UU (l1  l2  l3)
relate-same-elements-saturated-congruence-Monoid M R S =
  relate-same-elements-congruence-Monoid M
    ( congruence-saturated-congruence-Monoid M R)
    ( congruence-saturated-congruence-Monoid M S)

refl-relate-same-elements-saturated-congruence-Monoid :
  {l1 l2 : Level} (M : Monoid l1) (R : saturated-congruence-Monoid l2 M) 
  relate-same-elements-saturated-congruence-Monoid M R R
refl-relate-same-elements-saturated-congruence-Monoid M R =
  refl-relate-same-elements-congruence-Monoid M
    ( congruence-saturated-congruence-Monoid M R)

is-torsorial-relate-same-elements-saturated-congruence-Monoid :
  {l1 l2 : Level} (M : Monoid l1) (R : saturated-congruence-Monoid l2 M) 
  is-torsorial (relate-same-elements-saturated-congruence-Monoid M R)
is-torsorial-relate-same-elements-saturated-congruence-Monoid M R =
    ( is-torsorial-relate-same-elements-congruence-Monoid M
      ( congruence-saturated-congruence-Monoid M R))
    ( is-prop-is-saturated-congruence-Monoid M)
    ( congruence-saturated-congruence-Monoid M R)
    ( refl-relate-same-elements-congruence-Monoid M
      ( congruence-saturated-congruence-Monoid M R))
    ( is-saturated-saturated-congruence-Monoid M R)

relate-same-elements-eq-saturated-congruence-Monoid :
  {l1 l2 : Level} (M : Monoid l1) (R S : saturated-congruence-Monoid l2 M) 
  R  S  relate-same-elements-saturated-congruence-Monoid M R S
relate-same-elements-eq-saturated-congruence-Monoid M R .R refl =
  refl-relate-same-elements-saturated-congruence-Monoid M R

is-equiv-relate-same-elements-eq-saturated-congruence-Monoid :
  {l1 l2 : Level} (M : Monoid l1) (R S : saturated-congruence-Monoid l2 M) 
  is-equiv (relate-same-elements-eq-saturated-congruence-Monoid M R S)
is-equiv-relate-same-elements-eq-saturated-congruence-Monoid M R =
    ( is-torsorial-relate-same-elements-saturated-congruence-Monoid M R)
    ( relate-same-elements-eq-saturated-congruence-Monoid M R)

extensionality-saturated-congruence-Monoid :
  {l1 l2 : Level} (M : Monoid l1) (R S : saturated-congruence-Monoid l2 M) 
  (R  S)  relate-same-elements-saturated-congruence-Monoid M R S
pr1 (extensionality-saturated-congruence-Monoid M R S) =
  relate-same-elements-eq-saturated-congruence-Monoid M R S
pr2 (extensionality-saturated-congruence-Monoid M R S) =
  is-equiv-relate-same-elements-eq-saturated-congruence-Monoid M R S

eq-relate-same-elements-saturated-congruence-Monoid :
  {l1 l2 : Level} (M : Monoid l1) (R S : saturated-congruence-Monoid l2 M) 
  relate-same-elements-saturated-congruence-Monoid M R S  R  S
eq-relate-same-elements-saturated-congruence-Monoid M R S =
  map-inv-equiv (extensionality-saturated-congruence-Monoid M R S)

See also

  • Not every congruence relation on a monoid is saturated. For an example, see the monoid ℕ-Max.

Recent changes