The poset of radical ideals of a commutative ring
Content created by Egbert Rijke, Fredrik Bakke, Maša Žaucer and Gregor Perčič.
Created on 2023-06-08.
Last modified on 2023-11-24.
module commutative-algebra.poset-of-radical-ideals-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.poset-of-ideals-commutative-rings open import commutative-algebra.radical-ideals-commutative-rings open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders open import order-theory.similarity-of-elements-large-posets
Idea
The large poset of radical ideals in a commutative ring consists of radical ideals ordered by inclusion.
Definition
The ordering of radical ideals in a commutative ring
module _ {l1 : Level} (A : Commutative-Ring l1) where leq-prop-radical-ideal-Commutative-Ring : {l2 l3 : Level} → radical-ideal-Commutative-Ring l2 A → radical-ideal-Commutative-Ring l3 A → Prop (l1 ⊔ l2 ⊔ l3) leq-prop-radical-ideal-Commutative-Ring I J = leq-prop-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) ( ideal-radical-ideal-Commutative-Ring A J) leq-radical-ideal-Commutative-Ring : {l2 l3 : Level} → radical-ideal-Commutative-Ring l2 A → radical-ideal-Commutative-Ring l3 A → UU (l1 ⊔ l2 ⊔ l3) leq-radical-ideal-Commutative-Ring I J = leq-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) ( ideal-radical-ideal-Commutative-Ring A J) is-prop-leq-radical-ideal-Commutative-Ring : {l2 l3 : Level} (I : radical-ideal-Commutative-Ring l2 A) (J : radical-ideal-Commutative-Ring l3 A) → is-prop (leq-radical-ideal-Commutative-Ring I J) is-prop-leq-radical-ideal-Commutative-Ring I J = is-prop-leq-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) ( ideal-radical-ideal-Commutative-Ring A J) refl-leq-radical-ideal-Commutative-Ring : {l2 : Level} (I : radical-ideal-Commutative-Ring l2 A) → leq-radical-ideal-Commutative-Ring I I refl-leq-radical-ideal-Commutative-Ring I = refl-leq-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) transitive-leq-radical-ideal-Commutative-Ring : {l2 l3 l4 : Level} (I : radical-ideal-Commutative-Ring l2 A) (J : radical-ideal-Commutative-Ring l3 A) (K : radical-ideal-Commutative-Ring l4 A) → leq-radical-ideal-Commutative-Ring J K → leq-radical-ideal-Commutative-Ring I J → leq-radical-ideal-Commutative-Ring I K transitive-leq-radical-ideal-Commutative-Ring I J K = transitive-leq-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) ( ideal-radical-ideal-Commutative-Ring A J) ( ideal-radical-ideal-Commutative-Ring A K) antisymmetric-leq-radical-ideal-Commutative-Ring : {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) → leq-radical-ideal-Commutative-Ring I J → leq-radical-ideal-Commutative-Ring J I → I = J antisymmetric-leq-radical-ideal-Commutative-Ring I J H K = eq-type-subtype ( is-radical-ideal-prop-Commutative-Ring A) ( antisymmetric-leq-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) ( ideal-radical-ideal-Commutative-Ring A J) ( H) ( K))
The large preorder of radical ideals in a commutative ring
module _ {l : Level} (A : Commutative-Ring l) where radical-ideal-Commutative-Ring-Large-Preorder : Large-Preorder (λ l1 → l ⊔ lsuc l1) (λ l1 l2 → l ⊔ l1 ⊔ l2) type-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder l1 = radical-ideal-Commutative-Ring l1 A leq-prop-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder = leq-prop-radical-ideal-Commutative-Ring A refl-leq-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder = refl-leq-radical-ideal-Commutative-Ring A transitive-leq-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder = transitive-leq-radical-ideal-Commutative-Ring A
The large poset of radical ideals in a commutative ring
module _ {l : Level} (A : Commutative-Ring l) where radical-ideal-Commutative-Ring-Large-Poset : Large-Poset (λ l1 → l ⊔ lsuc l1) (λ l1 l2 → l ⊔ l1 ⊔ l2) large-preorder-Large-Poset radical-ideal-Commutative-Ring-Large-Poset = radical-ideal-Commutative-Ring-Large-Preorder A antisymmetric-leq-Large-Poset radical-ideal-Commutative-Ring-Large-Poset = antisymmetric-leq-radical-ideal-Commutative-Ring A
Similarity of radical ideals in a commutative ring
module _ {l1 l2 l3 : Level} (A : Commutative-Ring l1) (I : radical-ideal-Commutative-Ring l2 A) (J : radical-ideal-Commutative-Ring l3 A) where sim-prop-radical-ideal-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3) sim-prop-radical-ideal-Commutative-Ring = sim-prop-Large-Poset (radical-ideal-Commutative-Ring-Large-Poset A) I J sim-radical-ideal-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3) sim-radical-ideal-Commutative-Ring = sim-Large-Poset (radical-ideal-Commutative-Ring-Large-Poset A) I J is-prop-sim-radical-ideal-Commutative-Ring : is-prop sim-radical-ideal-Commutative-Ring is-prop-sim-radical-ideal-Commutative-Ring = is-prop-sim-Large-Poset (radical-ideal-Commutative-Ring-Large-Poset A) I J
The inclusion of radical ideals into ideals of a commutative ring
module _ {l : Level} (A : Commutative-Ring l) where preserves-order-ideal-radical-ideal-Commutative-Ring : {l1 l2 : Level} (I : radical-ideal-Commutative-Ring l1 A) (J : radical-ideal-Commutative-Ring l2 A) → leq-radical-ideal-Commutative-Ring A I J → leq-ideal-Commutative-Ring A ( ideal-radical-ideal-Commutative-Ring A I) ( ideal-radical-ideal-Commutative-Ring A J) preserves-order-ideal-radical-ideal-Commutative-Ring I J H = H ideal-radical-ideal-hom-large-poset-Commutative-Ring : hom-Large-Poset ( λ l → l) ( radical-ideal-Commutative-Ring-Large-Poset A) ( ideal-Commutative-Ring-Large-Poset A) map-hom-Large-Preorder ideal-radical-ideal-hom-large-poset-Commutative-Ring = ideal-radical-ideal-Commutative-Ring A preserves-order-hom-Large-Preorder ideal-radical-ideal-hom-large-poset-Commutative-Ring = preserves-order-ideal-radical-ideal-Commutative-Ring
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Fredrik Bakke. Level-universe compatibility patch (#862).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).