The poset of radical ideals of a commutative ring

Content created by Egbert Rijke, Fredrik Bakke, Maša Žaucer and Gregor Perčič.

Created on 2023-06-08.
Last modified on 2023-11-24.

module commutative-algebra.poset-of-radical-ideals-commutative-rings where
Imports
open import commutative-algebra.commutative-rings
open import commutative-algebra.poset-of-ideals-commutative-rings
open import commutative-algebra.radical-ideals-commutative-rings

open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.large-posets
open import order-theory.large-preorders
open import order-theory.order-preserving-maps-large-posets
open import order-theory.order-preserving-maps-large-preorders
open import order-theory.similarity-of-elements-large-posets

Idea

The large poset of radical ideals in a commutative ring consists of radical ideals ordered by inclusion.

Definition

The ordering of radical ideals in a commutative ring

module _
  {l1 : Level} (A : Commutative-Ring l1)
  where

  leq-prop-radical-ideal-Commutative-Ring :
    {l2 l3 : Level} 
    radical-ideal-Commutative-Ring l2 A 
    radical-ideal-Commutative-Ring l3 A  Prop (l1  l2  l3)
  leq-prop-radical-ideal-Commutative-Ring I J =
    leq-prop-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)
      ( ideal-radical-ideal-Commutative-Ring A J)

  leq-radical-ideal-Commutative-Ring :
    {l2 l3 : Level} 
    radical-ideal-Commutative-Ring l2 A 
    radical-ideal-Commutative-Ring l3 A  UU (l1  l2  l3)
  leq-radical-ideal-Commutative-Ring I J =
    leq-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)
      ( ideal-radical-ideal-Commutative-Ring A J)

  is-prop-leq-radical-ideal-Commutative-Ring :
    {l2 l3 : Level}
    (I : radical-ideal-Commutative-Ring l2 A)
    (J : radical-ideal-Commutative-Ring l3 A) 
    is-prop (leq-radical-ideal-Commutative-Ring I J)
  is-prop-leq-radical-ideal-Commutative-Ring I J =
    is-prop-leq-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)
      ( ideal-radical-ideal-Commutative-Ring A J)

  refl-leq-radical-ideal-Commutative-Ring :
    {l2 : Level} (I : radical-ideal-Commutative-Ring l2 A) 
    leq-radical-ideal-Commutative-Ring I I
  refl-leq-radical-ideal-Commutative-Ring I =
    refl-leq-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)

  transitive-leq-radical-ideal-Commutative-Ring :
    {l2 l3 l4 : Level}
    (I : radical-ideal-Commutative-Ring l2 A)
    (J : radical-ideal-Commutative-Ring l3 A)
    (K : radical-ideal-Commutative-Ring l4 A) 
    leq-radical-ideal-Commutative-Ring J K 
    leq-radical-ideal-Commutative-Ring I J 
    leq-radical-ideal-Commutative-Ring I K
  transitive-leq-radical-ideal-Commutative-Ring I J K =
    transitive-leq-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)
      ( ideal-radical-ideal-Commutative-Ring A J)
      ( ideal-radical-ideal-Commutative-Ring A K)

  antisymmetric-leq-radical-ideal-Commutative-Ring :
    {l2 : Level} (I J : radical-ideal-Commutative-Ring l2 A) 
    leq-radical-ideal-Commutative-Ring I J 
    leq-radical-ideal-Commutative-Ring J I  I  J
  antisymmetric-leq-radical-ideal-Commutative-Ring I J H K =
    eq-type-subtype
      ( is-radical-ideal-prop-Commutative-Ring A)
      ( antisymmetric-leq-ideal-Commutative-Ring A
        ( ideal-radical-ideal-Commutative-Ring A I)
        ( ideal-radical-ideal-Commutative-Ring A J)
        ( H)
        ( K))

The large preorder of radical ideals in a commutative ring

module _
  {l : Level} (A : Commutative-Ring l)
  where

  radical-ideal-Commutative-Ring-Large-Preorder :
    Large-Preorder  l1  l  lsuc l1)  l1 l2  l  l1  l2)
  type-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder l1 =
    radical-ideal-Commutative-Ring l1 A
  leq-prop-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder =
    leq-prop-radical-ideal-Commutative-Ring A
  refl-leq-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder =
    refl-leq-radical-ideal-Commutative-Ring A
  transitive-leq-Large-Preorder radical-ideal-Commutative-Ring-Large-Preorder =
    transitive-leq-radical-ideal-Commutative-Ring A

The large poset of radical ideals in a commutative ring

module _
  {l : Level} (A : Commutative-Ring l)
  where

  radical-ideal-Commutative-Ring-Large-Poset :
    Large-Poset  l1  l  lsuc l1)  l1 l2  l  l1  l2)
  large-preorder-Large-Poset radical-ideal-Commutative-Ring-Large-Poset =
    radical-ideal-Commutative-Ring-Large-Preorder A
  antisymmetric-leq-Large-Poset radical-ideal-Commutative-Ring-Large-Poset =
    antisymmetric-leq-radical-ideal-Commutative-Ring A

Similarity of radical ideals in a commutative ring

module _
  {l1 l2 l3 : Level} (A : Commutative-Ring l1)
  (I : radical-ideal-Commutative-Ring l2 A)
  (J : radical-ideal-Commutative-Ring l3 A)
  where

  sim-prop-radical-ideal-Commutative-Ring : Prop (l1  l2  l3)
  sim-prop-radical-ideal-Commutative-Ring =
    sim-prop-Large-Poset (radical-ideal-Commutative-Ring-Large-Poset A) I J

  sim-radical-ideal-Commutative-Ring : UU (l1  l2  l3)
  sim-radical-ideal-Commutative-Ring =
    sim-Large-Poset (radical-ideal-Commutative-Ring-Large-Poset A) I J

  is-prop-sim-radical-ideal-Commutative-Ring :
    is-prop sim-radical-ideal-Commutative-Ring
  is-prop-sim-radical-ideal-Commutative-Ring =
    is-prop-sim-Large-Poset (radical-ideal-Commutative-Ring-Large-Poset A) I J

The inclusion of radical ideals into ideals of a commutative ring

module _
  {l : Level} (A : Commutative-Ring l)
  where

  preserves-order-ideal-radical-ideal-Commutative-Ring :
    {l1 l2 : Level}
    (I : radical-ideal-Commutative-Ring l1 A)
    (J : radical-ideal-Commutative-Ring l2 A) 
    leq-radical-ideal-Commutative-Ring A I J 
    leq-ideal-Commutative-Ring A
      ( ideal-radical-ideal-Commutative-Ring A I)
      ( ideal-radical-ideal-Commutative-Ring A J)
  preserves-order-ideal-radical-ideal-Commutative-Ring I J H = H

  ideal-radical-ideal-hom-large-poset-Commutative-Ring :
    hom-Large-Poset
      ( λ l  l)
      ( radical-ideal-Commutative-Ring-Large-Poset A)
      ( ideal-Commutative-Ring-Large-Poset A)
  map-hom-Large-Preorder
    ideal-radical-ideal-hom-large-poset-Commutative-Ring =
    ideal-radical-ideal-Commutative-Ring A
  preserves-order-hom-Large-Preorder
    ideal-radical-ideal-hom-large-poset-Commutative-Ring =
    preserves-order-ideal-radical-ideal-Commutative-Ring

Recent changes