Species of types
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-03-21.
Last modified on 2024-01-12.
module species.species-of-types where
Imports
open import foundation.cartesian-product-types open import foundation.equivalences open import foundation.transport-along-identifications open import foundation.univalence open import foundation.universe-levels
Idea
A species of types is defined to be a map from a universe to a universe.
Definitions
Species of types
species-types : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) species-types l1 l2 = UU l1 → UU l2
The predicate that a species preserves cartesian products
preserves-product-species-types : {l1 l2 : Level} (S : species-types l1 l2) → UU (lsuc l1 ⊔ l2) preserves-product-species-types {l1} S = (X Y : UU l1) → S (X × Y) ≃ (S X × S Y)
Transport in species
tr-species-types : {l1 l2 : Level} (F : species-types l1 l2) (X Y : UU l1) → X ≃ Y → F X → F Y tr-species-types F X Y e = tr F (eq-equiv e)
Recent changes
- 2024-01-12. Fredrik Bakke. Make type arguments implicit for
eq-equiv
(#998). - 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Victor Blanchi, Fredrik Bakke and Egbert Rijke. Product of Dirichlet series (#643).
- 2023-04-27. Egbert Rijke. Cleaning up some stuff in species (#575).