The zero conatural number
Content created by Fredrik Bakke.
Created on 2025-01-04.
Last modified on 2025-01-04.
{-# OPTIONS --guardedness #-} module elementary-number-theory.zero-conatural-numbers where
Imports
open import elementary-number-theory.conatural-numbers open import foundation.coproduct-types open import foundation.decidable-types open import foundation.function-types open import foundation.maybe open import foundation.negation open import foundation.universe-levels open import foundation-core.identity-types open import foundation-core.propositions
Idea
A conatural number x
is
zero¶ if it does
not have a predecessor.
Definitions
The predicate on conatural numbers of being zero
is-zero-ℕ∞ : ℕ∞ → UU lzero is-zero-ℕ∞ x = is-exception-Maybe (decons-ℕ∞ x)
Properties
Zero is zero
is-zero-zero-ℕ∞ : is-zero-ℕ∞ zero-ℕ∞ is-zero-zero-ℕ∞ = refl
Successors are not zero
is-not-zero-succ-ℕ∞ : (x : ℕ∞) → ¬ (is-zero-ℕ∞ (succ-ℕ∞ x)) is-not-zero-succ-ℕ∞ x ()
The point at infinity is not zero
is-not-zero-infinity-ℕ∞ : ¬ (is-zero-ℕ∞ infinity-ℕ∞) is-not-zero-infinity-ℕ∞ = is-not-zero-succ-ℕ∞ infinity-ℕ∞
Being zero is decidable
is-decidable-is-zero-ℕ∞ : (x : ℕ∞) → is-decidable (is-zero-ℕ∞ x) is-decidable-is-zero-ℕ∞ x with decons-ℕ∞ x is-decidable-is-zero-ℕ∞ x | inl y = inr (is-not-zero-succ-ℕ∞ y) is-decidable-is-zero-ℕ∞ x | inr * = inl is-zero-zero-ℕ∞
Being zero is a property
is-prop-is-zero-ℕ∞ : (x : ℕ∞) → is-prop (is-zero-ℕ∞ x) is-prop-is-zero-ℕ∞ = is-prop-is-exception-Maybe ∘ decons-ℕ∞
See also
Recent changes
- 2025-01-04. Fredrik Bakke. Coinductive definition of the conatural numbers (#1232).