Rigid objects in a category
Content created by Fredrik Bakke.
Created on 2023-11-01.
Last modified on 2023-11-09.
module category-theory.rigid-objects-categories where
Imports
open import category-theory.categories open import category-theory.rigid-objects-precategories open import foundation.propositions open import foundation.universe-levels
Idea
A rigid object in a category is an object whose automorphism group is trivial.
Definitions
The predicate of being rigid
module _ {l1 l2 : Level} (C : Category l1 l2) (x : obj-Category C) where is-rigid-obj-prop-Category : Prop l2 is-rigid-obj-prop-Category = is-rigid-obj-prop-Precategory (precategory-Category C) x is-rigid-obj-Category : UU l2 is-rigid-obj-Category = type-Prop is-rigid-obj-prop-Category is-prop-is-rigid-obj-Category : is-prop is-rigid-obj-Category is-prop-is-rigid-obj-Category = is-prop-type-Prop is-rigid-obj-prop-Category
The type of rigid objects in a category
rigid-obj-Category : {l1 l2 : Level} (C : Category l1 l2) → UU (l1 ⊔ l2) rigid-obj-Category C = rigid-obj-Precategory (precategory-Category C) module _ {l1 l2 : Level} (C : Category l1 l2) where obj-rigid-obj-Category : rigid-obj-Category C → obj-Category C obj-rigid-obj-Category = obj-rigid-obj-Precategory (precategory-Category C) is-rigid-rigid-obj-Category : (x : rigid-obj-Category C) → is-rigid-obj-Category C (obj-rigid-obj-Category x) is-rigid-rigid-obj-Category = is-rigid-rigid-obj-Precategory (precategory-Category C)
See also
- Every object in a category is rigid if and only if it is gaunt.
External links
- rigid object at Lab
Recent changes
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).