Equivalences of species of types in subuniverses
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-04-27.
Last modified on 2023-04-28.
module species.equivalences-species-of-types-in-subuniverses where
Imports
open import foundation.equivalences open import foundation.identity-types open import foundation.subuniverses open import foundation.universe-levels open import species.species-of-types-in-subuniverses
Idea
An equivalence of species of types from F
to G
is a pointwise equivalence.
Definition
equiv-species-subuniverse : {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : subuniverse l1 l3) → species-subuniverse P Q → species-subuniverse P Q → UU (lsuc l1 ⊔ l2) equiv-species-subuniverse {l1} P Q S T = (X : type-subuniverse P) → inclusion-subuniverse Q (S X) ≃ inclusion-subuniverse Q (T X)
Properties
The identity type of two species of types is equivalent to the type of equivalences between them
extensionality-species-subuniverse : {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : subuniverse l1 l3) → (S : species-subuniverse P Q) → (T : species-subuniverse P Q) → (Id S T) ≃ (equiv-species-subuniverse P Q S T) extensionality-species-subuniverse P Q S T = extensionality-fam-subuniverse Q S T
Recent changes
- 2023-04-28. Egbert Rijke and Fredrik Bakke. Cleaning up species (#578).
- 2023-04-27. Egbert Rijke. Cleaning up some stuff in species (#575).