Functorial action on isometries of Cauchy pseudocompletions of metric spaces

Content created by malarbol.

Created on 2026-02-12.
Last modified on 2026-02-12.

module metric-spaces.functoriality-isometries-cauchy-pseudocompletions-of-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.homotopies
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.cauchy-approximations-pseudometric-spaces
open import metric-spaces.cauchy-pseudocompletions-of-metric-spaces
open import metric-spaces.cauchy-pseudocompletions-of-pseudometric-spaces
open import metric-spaces.functoriality-isometries-cauchy-pseudocompletions-of-pseudometric-spaces
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.isometries-pseudometric-spaces
open import metric-spaces.maps-pseudometric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.pseudometric-spaces
open import metric-spaces.short-maps-pseudometric-spaces

Idea

The functorial action of Cauchy pseudocompletions on isometries between metric spaces is the functorial action between their underlying pseudometric spaces and isometries.

It maps isometries between metric spaces to isometries between their Cauchy pseudocompletions.

Definitions

The isometric action on isometries of Cauchy pseudocompletions

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : isometry-Metric-Space A B)
  where

  isometry-cauchy-pseudocompletion-Metric-Space :
    isometry-Pseudometric-Space
      ( cauchy-pseudocompletion-Metric-Space A)
      ( cauchy-pseudocompletion-Metric-Space B)
  isometry-cauchy-pseudocompletion-Metric-Space =
    isometry-cauchy-pseudocompletion-Pseudometric-Space
      ( pseudometric-Metric-Space A)
      ( pseudometric-Metric-Space B)
      ( f)

  map-isometry-cauchy-pseudocompletion-Metric-Space :
    map-Pseudometric-Space
      ( cauchy-pseudocompletion-Metric-Space A)
      ( cauchy-pseudocompletion-Metric-Space B)
  map-isometry-cauchy-pseudocompletion-Metric-Space =
    map-isometry-cauchy-pseudocompletion-Pseudometric-Space
      ( pseudometric-Metric-Space A)
      ( pseudometric-Metric-Space B)
      ( f)

Properties

The action on isometries preserves homotopies

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f g : isometry-Metric-Space A B)
  (f~g : htpy-map-isometry-Metric-Space A B f g)
  where abstract

  htpy-map-isometry-cauchy-pseudocompletion-Metric-Space :
    map-isometry-cauchy-pseudocompletion-Metric-Space A B f ~
    map-isometry-cauchy-pseudocompletion-Metric-Space A B g
  htpy-map-isometry-cauchy-pseudocompletion-Metric-Space u =
    eq-htpy-cauchy-approximation-Metric-Space B
      ( f~g  map-cauchy-approximation-Metric-Space A u)

The action on isometries preserves composition

module _
  {la la' lb lb' lc lc' : Level}
  (A : Metric-Space la la')
  (B : Metric-Space lb lb')
  (C : Metric-Space lc lc')
  (g : isometry-Metric-Space B C)
  (f : isometry-Metric-Space A B)
  where

  htpy-comp-map-isometry-cauchy-pseudocompletion-Metric-Space :
    ( map-isometry-cauchy-pseudocompletion-Metric-Space B C g 
      map-isometry-cauchy-pseudocompletion-Metric-Space A B f) ~
    ( map-isometry-cauchy-pseudocompletion-Metric-Space A C
      ( comp-isometry-Metric-Space A B C g f))
  htpy-comp-map-isometry-cauchy-pseudocompletion-Metric-Space u =
    eq-htpy-cauchy-approximation-Metric-Space C refl-htpy

Recent changes