Functorial action on isometries of Cauchy pseudocompletions of metric spaces
Content created by malarbol.
Created on 2026-02-12.
Last modified on 2026-02-12.
module metric-spaces.functoriality-isometries-cauchy-pseudocompletions-of-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.cauchy-pseudocompletions-of-metric-spaces open import metric-spaces.cauchy-pseudocompletions-of-pseudometric-spaces open import metric-spaces.functoriality-isometries-cauchy-pseudocompletions-of-pseudometric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.maps-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.short-maps-pseudometric-spaces
Idea
The functorial action¶ of Cauchy pseudocompletions on isometries between metric spaces is the functorial action between their underlying pseudometric spaces and isometries.
It maps isometries between metric spaces to isometries between their Cauchy pseudocompletions.
Definitions
The isometric action on isometries of Cauchy pseudocompletions
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : isometry-Metric-Space A B) where isometry-cauchy-pseudocompletion-Metric-Space : isometry-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) isometry-cauchy-pseudocompletion-Metric-Space = isometry-cauchy-pseudocompletion-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f) map-isometry-cauchy-pseudocompletion-Metric-Space : map-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) map-isometry-cauchy-pseudocompletion-Metric-Space = map-isometry-cauchy-pseudocompletion-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f)
Properties
The action on isometries preserves homotopies
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f g : isometry-Metric-Space A B) (f~g : htpy-map-isometry-Metric-Space A B f g) where abstract htpy-map-isometry-cauchy-pseudocompletion-Metric-Space : map-isometry-cauchy-pseudocompletion-Metric-Space A B f ~ map-isometry-cauchy-pseudocompletion-Metric-Space A B g htpy-map-isometry-cauchy-pseudocompletion-Metric-Space u = eq-htpy-cauchy-approximation-Metric-Space B ( f~g ∘ map-cauchy-approximation-Metric-Space A u)
The action on isometries preserves composition
module _ {la la' lb lb' lc lc' : Level} (A : Metric-Space la la') (B : Metric-Space lb lb') (C : Metric-Space lc lc') (g : isometry-Metric-Space B C) (f : isometry-Metric-Space A B) where htpy-comp-map-isometry-cauchy-pseudocompletion-Metric-Space : ( map-isometry-cauchy-pseudocompletion-Metric-Space B C g ∘ map-isometry-cauchy-pseudocompletion-Metric-Space A B f) ~ ( map-isometry-cauchy-pseudocompletion-Metric-Space A C ( comp-isometry-Metric-Space A B C g f)) htpy-comp-map-isometry-cauchy-pseudocompletion-Metric-Space u = eq-htpy-cauchy-approximation-Metric-Space C refl-htpy
Recent changes
- 2026-02-12. malarbol. Fix names for Cauchy pseudocompletions constructions (#1814).