Lower sets in large posets
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module order-theory.lower-sets-large-posets where
Imports
open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-subposets
Idea
A lower set or downwards closed set in a large poset is a large subposet that is downwards closed, i.e., that satisfies the condition that
∀ (x y : P), (y ≤ x) → x ∈ S → y ∈ S.
Definitions
The predicate of being a lower set
module _ {α γ : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) (S : Large-Subposet γ P) where is-lower-set-Large-Subposet : UUω is-lower-set-Large-Subposet = {l1 l2 : Level} (x : type-Large-Poset P l1) (y : type-Large-Poset P l2) → leq-Large-Poset P y x → is-in-Large-Subposet P S x → is-in-Large-Subposet P S y
Lower sets of a large poset
module _ {α : Level → Level} {β : Level → Level → Level} (γ : Level → Level) (P : Large-Poset α β) where record lower-set-Large-Poset : UUω where field large-subposet-lower-set-Large-Poset : Large-Subposet γ P is-lower-set-lower-set-Large-Poset : is-lower-set-Large-Subposet P large-subposet-lower-set-Large-Poset open lower-set-Large-Poset public module _ {α γ : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) (L : lower-set-Large-Poset γ P) where is-in-lower-set-Large-Poset : {l : Level} (x : type-Large-Poset P l) → UU (γ l) is-in-lower-set-Large-Poset = is-in-Large-Subposet P (large-subposet-lower-set-Large-Poset L)
See also
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).