Normal subgroups of concrete groups

Content created by Jonathan Prieto-Cubides, Egbert Rijke and Fredrik Bakke.

Created on 2022-07-10.
Last modified on 2023-03-13.

module group-theory.normal-subgroups-concrete-groups where
open import foundation.universe-levels

open import group-theory.concrete-group-actions
open import group-theory.concrete-groups
open import group-theory.subgroups-concrete-groups
open import group-theory.transitive-concrete-group-actions


A normal subgroup is a fixed point of the conjugation action on the (large) set of all subgroups


normal-subgroup-Concrete-Group :
  {l1 : Level} (l2 : Level) (G : Concrete-Group l1)  UU (l1  lsuc l2)
normal-subgroup-Concrete-Group l2 G =
  (u : classifying-type-Concrete-Group G) 
  subgroup-action-Concrete-Group l2 G u

module _
  {l1 l2 : Level} (G : Concrete-Group l1)
  (H : normal-subgroup-Concrete-Group l2 G)

  subgroup-normal-subgroup-Concrete-Group : subgroup-Concrete-Group l2 G
  subgroup-normal-subgroup-Concrete-Group = H (shape-Concrete-Group G)

  action-normal-subgroup-Concrete-Group : action-Concrete-Group l2 G
  action-normal-subgroup-Concrete-Group =
    action-subgroup-Concrete-Group G subgroup-normal-subgroup-Concrete-Group

  transitive-action-normal-subgroup-Concrete-Group :
    transitive-action-Concrete-Group l2 G
  transitive-action-normal-subgroup-Concrete-Group =
    transitive-action-subgroup-Concrete-Group G
      ( subgroup-normal-subgroup-Concrete-Group)

Recent changes