Unbounded endomaps on the real numbers

Content created by Louis Wasserman.

Created on 2026-01-13.
Last modified on 2026-01-13.

module real-numbers.unbounded-endomaps-real-numbers where
Imports
open import elementary-number-theory.rational-numbers

open import foundation.conjunction
open import foundation.existential-quantification
open import foundation.propositions
open import foundation.universe-levels

open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.rational-real-numbers

Idea

An endomap f on the real numbers is

  • unbounded above if for every rational q, there exists x such that q ≤ f x
  • unbounded below if for every rational q, there exists x such that f x ≤ q

Definition

module _
  {l1 l2 : Level}
  (f :  l1   l2)
  where

  is-unbounded-above-prop-endomap-ℝ : Prop (lsuc l1  l2)
  is-unbounded-above-prop-endomap-ℝ =
    Π-Prop   q   ( l1)  x  leq-prop-ℝ (real-ℚ q) (f x)))

  is-unbounded-above-endomap-ℝ : UU (lsuc l1  l2)
  is-unbounded-above-endomap-ℝ = type-Prop is-unbounded-above-prop-endomap-ℝ

  is-unbounded-below-prop-endomap-ℝ : Prop (lsuc l1  l2)
  is-unbounded-below-prop-endomap-ℝ =
    Π-Prop   q   ( l1)  x  leq-prop-ℝ (f x) (real-ℚ q)))

  is-unbounded-below-endomap-ℝ : UU (lsuc l1  l2)
  is-unbounded-below-endomap-ℝ = type-Prop is-unbounded-below-prop-endomap-ℝ

  is-unbounded-above-and-below-prop-endomap-ℝ : Prop (lsuc l1  l2)
  is-unbounded-above-and-below-prop-endomap-ℝ =
    is-unbounded-above-prop-endomap-ℝ  is-unbounded-below-prop-endomap-ℝ

  is-unbounded-above-and-below-endomap-ℝ : UU (lsuc l1  l2)
  is-unbounded-above-and-below-endomap-ℝ =
    type-Prop is-unbounded-above-and-below-prop-endomap-ℝ

Recent changes