Cauchy approximations in metric quotients of pseudometric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-11-06.
Last modified on 2025-11-06.
{-# OPTIONS --lossy-unification #-} module metric-spaces.cauchy-approximations-metric-quotients-of-pseudometric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.binary-transport open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalence-classes open import foundation.equivalences open import foundation.existential-quantification open import foundation.fibers-of-maps open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.propositions open import foundation.reflecting-maps-equivalence-relations open import foundation.retractions open import foundation.sections open import foundation.set-quotients open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universal-property-set-quotients open import foundation.universe-levels open import logic.functoriality-existential-quantification open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.equality-of-metric-spaces open import metric-spaces.extensionality-pseudometric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces open import metric-spaces.metric-quotients-of-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-functions-metric-spaces open import metric-spaces.short-functions-pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
The pointwise quotients of Cauchy approximations by the similarity relation of the pseudometric space are Cauchy approximations in the metric quotient. A Cauchy approximation in the metric quotient of a pseudometric space has a lift up to similarity¶ if it is similar (in the Cauchy pseudocompletion of the metric quotient) to the pointwise quotient of some Cauchy approximation in the pseudometric space.
The pointwise quotient of Cauchy approximations preserves limits. The pointwise quotient of a Cauchy approximation has a lift. A Cauchy approximation that admits a limit has a lift. If the metric quotient is complete, then all Cauchy approximations in the metric quotient have a lift.
Definitions
The pointwise quotient Cauchy approximation of a Cauchy approximation in a pseudometric space
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) where short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space : short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( cauchy-pseudocompletion-Metric-Space ( metric-quotient-Pseudometric-Space M)) short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space = short-map-short-function-cauchy-approximation-Pseudometric-Space ( M) ( pseudometric-metric-quotient-Pseudometric-Space M) ( short-map-metric-quotient-Pseudometric-Space M) map-metric-quotient-cauchy-approximation-Pseudometric-Space : cauchy-approximation-Pseudometric-Space M → cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space M) map-metric-quotient-cauchy-approximation-Pseudometric-Space = map-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( cauchy-pseudocompletion-Metric-Space ( metric-quotient-Pseudometric-Space M)) ( short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space) is-short-map-metric-quotient-cauchy-approximation-Pseudometric-Space : is-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( cauchy-pseudocompletion-Metric-Space ( metric-quotient-Pseudometric-Space M)) ( map-metric-quotient-cauchy-approximation-Pseudometric-Space) is-short-map-metric-quotient-cauchy-approximation-Pseudometric-Space = is-short-map-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( cauchy-pseudocompletion-Metric-Space ( metric-quotient-Pseudometric-Space M)) ( short-map-metric-quotient-cauchy-apprtoximation-Pseudometric-Space)
Lifts of Cauchy approximations in the quotient metric space up to similarity
module _ { l1 l2 : Level} (A : Pseudometric-Space l1 l2) ( u : cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space A)) ( v : cauchy-approximation-Pseudometric-Space A) where is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space : Prop (l1 ⊔ l2) is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space = sim-prop-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( pseudometric-metric-quotient-Pseudometric-Space A)) ( u) ( map-metric-quotient-cauchy-approximation-Pseudometric-Space A v) is-lift-quotient-cauchy-approximation-Pseudometric-Space : UU (l1 ⊔ l2) is-lift-quotient-cauchy-approximation-Pseudometric-Space = type-Prop is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space is-prop-is-lift-quotient-cauchy-approximation-Pseudometric-Space : is-prop is-lift-quotient-cauchy-approximation-Pseudometric-Space is-prop-is-lift-quotient-cauchy-approximation-Pseudometric-Space = is-prop-type-Prop is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) ( u : cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space A)) where has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space : Prop (l1 ⊔ l2) has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space = ∃ ( cauchy-approximation-Pseudometric-Space A) ( is-lift-quotient-prop-cauchy-approximation-Pseudometric-Space A u) has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space : UU (l1 ⊔ l2) has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space = type-Prop has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space is-prop-has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space : is-prop has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space is-prop-has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space = is-prop-type-Prop has-lift-prop-cauchy-approximation-metric-quotient-Pseudometric-Space
Properties
The pointwise quotient of Cauchy approximations in the quotient metric space preserves limits
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) (u : cauchy-approximation-Pseudometric-Space M) (lim : type-Pseudometric-Space M) (is-lim : is-limit-cauchy-approximation-Pseudometric-Space M u lim) where preserves-limit-map-metric-quotient-cauchy-approximation-Pseudometric-Space : is-limit-cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space M) ( map-metric-quotient-cauchy-approximation-Pseudometric-Space M u) ( map-metric-quotient-Pseudometric-Space M lim) preserves-limit-map-metric-quotient-cauchy-approximation-Pseudometric-Space ε δ (x , x∈uε) (y , y∈lim) = let lim~y : sim-Pseudometric-Space M lim y lim~y = sim-is-in-equivalence-class-quotient-map-set-quotient ( equivalence-relation-sim-Pseudometric-Space M) ( lim) ( y) ( y∈lim) uε~x : sim-Pseudometric-Space M ( map-cauchy-approximation-Pseudometric-Space M u ε) ( x) uε~x = sim-is-in-equivalence-class-quotient-map-set-quotient ( equivalence-relation-sim-Pseudometric-Space M) ( map-cauchy-approximation-Pseudometric-Space M u ε) ( x) ( x∈uε) in preserves-neighborhood-sim-Pseudometric-Space ( M) ( uε~x) ( lim~y) ( ε +ℚ⁺ δ) ( is-lim ε δ)
Pointwise quotients of Cauchy approximations have lifts
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (u : cauchy-approximation-Pseudometric-Space A) where has-lift-map-quotient-cauchy-approximation-metric-quotient-Pseudometric-Space : has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space ( A) ( map-metric-quotient-cauchy-approximation-Pseudometric-Space A u) has-lift-map-quotient-cauchy-approximation-metric-quotient-Pseudometric-Space = unit-trunc-Prop ( u , refl-sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( pseudometric-metric-quotient-Pseudometric-Space A)) ( map-metric-quotient-cauchy-approximation-Pseudometric-Space A u))
Convergent Cauchy approximations in the quotient metric space have a lift up to similarity
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) ( u : cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space A)) ( lim : type-Metric-Space (metric-quotient-Pseudometric-Space A)) ( is-lim : is-limit-cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space A) ( u) ( lim)) where lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space : (x : type-Pseudometric-Space A) → (is-in-class-metric-quotient-Pseudometric-Space A lim x) → is-lift-quotient-cauchy-approximation-Pseudometric-Space ( A) ( u) ( const-cauchy-approximation-Pseudometric-Space A x) lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space x x∈lim = transitive-sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( pseudometric-metric-quotient-Pseudometric-Space A)) ( u) ( const-cauchy-approximation-Pseudometric-Space ( pseudometric-metric-quotient-Pseudometric-Space A) ( lim)) ( const-cauchy-approximation-Pseudometric-Space ( pseudometric-metric-quotient-Pseudometric-Space A) ( map-metric-quotient-Pseudometric-Space A x)) ( λ d α β → sim-eq-Pseudometric-Space ( pseudometric-metric-quotient-Pseudometric-Space A) ( lim) ( map-metric-quotient-Pseudometric-Space A x) ( inv ( eq-set-quotient-equivalence-class-set-quotient ( equivalence-relation-sim-Pseudometric-Space A) ( lim) ( x∈lim))) ( α +ℚ⁺ β +ℚ⁺ d)) ( sim-const-is-limit-cauchy-approximation-Pseudometric-Space ( pseudometric-metric-quotient-Pseudometric-Space A) ( u) ( lim) ( is-lim)) module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) ( u : cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space A)) where has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space : is-convergent-cauchy-approximation-Metric-Space ( metric-quotient-Pseudometric-Space A) ( u) → has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space A u has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space (lim , is-lim) = map-exists ( is-lift-quotient-cauchy-approximation-Pseudometric-Space A u) ( const-cauchy-approximation-Pseudometric-Space A) ( lemma-sim-lift-is-limit-cauchy-approximation-metric-quotient-Pseudometric-Space ( A) ( u) ( lim) ( is-lim)) ( is-inhabited-class-metric-quotient-Pseudometric-Space A lim)
If the metric quotient of a pseudometric space is complete, all cauchy approximations have lifts up to similarity
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (H : is-complete-Metric-Space (metric-quotient-Pseudometric-Space A)) (u : cauchy-approximation-Metric-Space (metric-quotient-Pseudometric-Space A)) where has-lift-cauchy-approximation-is-complete-metric-quotient-Pseudometric-Space : has-lift-cauchy-approximation-metric-quotient-Pseudometric-Space A u has-lift-cauchy-approximation-is-complete-metric-quotient-Pseudometric-Space = has-lift-is-convergent-cauchy-approximation-metric-quotient-Pseudometric-Space ( A) ( u) ( H u)
Recent changes
- 2025-11-06. malarbol and Louis Wasserman. Metric quotients of pseudometric spaces (#1622).