Cauchy pseudocompletions of complete metric space
Content created by malarbol.
Created on 2025-12-25.
Last modified on 2025-12-25.
module metric-spaces.cauchy-pseudocompletion-of-complete-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-in-cauchy-pseudocompletions-of-pseudometric-spaces open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.functions-pseudometric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-functions-pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
Any complete is a retract of its cauchy pseudocompletion.
Properties
Any complete metric space is a short retract of its Cauchy pseudocompletion
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (is-complete-M : is-complete-Metric-Space M) where map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : type-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( pseudometric-Metric-Space M) map-lim-cauchy-pseudocompletion-is-complete-Metric-Space = limit-cauchy-approximation-Complete-Metric-Space ( M , is-complete-M) is-limit-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : (u : cauchy-approximation-Metric-Space M) → is-limit-cauchy-approximation-Metric-Space ( M) ( u) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u) is-limit-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space = is-limit-limit-cauchy-approximation-Complete-Metric-Space ( M , is-complete-M) sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : (u : cauchy-approximation-Metric-Space M) → sim-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( u) ( const-cauchy-approximation-Metric-Space ( M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u)) sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u = sim-const-is-limit-cauchy-approximation-Metric-Space ( M) ( u) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u) ( is-limit-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u) is-short-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : is-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( cauchy-pseudocompletion-Metric-Space M) ( ( const-cauchy-approximation-Metric-Space M) ∘ ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space)) is-short-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space d x y = preserves-neighborhoods-sim-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) { x} { const-cauchy-approximation-Metric-Space ( M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space x)} { y} { const-cauchy-approximation-Metric-Space ( M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space y)} ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( x)) ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( y)) ( d) is-short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : is-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( pseudometric-Metric-Space M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space) is-short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space d x y Nxy = saturated-neighborhood-Metric-Space ( M) ( d) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space x) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space y) ( lemma-saturated-neighborhood-map-lim) where lemma-saturated-neighborhood-map-lim : (δ : ℚ⁺) → neighborhood-Metric-Space ( M) ( d +ℚ⁺ δ) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space x) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space y) lemma-saturated-neighborhood-map-lim δ = tr ( is-upper-bound-dist-Metric-Space ( M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space x) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space y)) ( ap (add-ℚ⁺' d) (eq-add-split-ℚ⁺ δ) ∙ commutative-add-ℚ⁺ δ d) ( is-short-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( d) ( x) ( y) ( Nxy) ( left-summand-split-ℚ⁺ δ) ( right-summand-split-ℚ⁺ δ)) short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : short-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( pseudometric-Metric-Space M) short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space = ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space , is-short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space) is-retraction-map-cauchy-pseudocompletion-is-complete-Metric-Space : ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ∘ map-cauchy-pseudocompletion-Metric-Space M) ~ ( id) is-retraction-map-cauchy-pseudocompletion-is-complete-Metric-Space = is-retraction-limit-cauchy-approximation-Complete-Metric-Space ( M , is-complete-M) sim-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : (u : cauchy-approximation-Metric-Space M) → sim-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( u) ( map-cauchy-pseudocompletion-Metric-Space ( M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u)) sim-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u = sim-const-is-limit-cauchy-approximation-Metric-Space ( M) ( u) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u) ( is-limit-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space u)
The isometry mapping a Cauchy approximation in a complete metric space to its limit
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) (is-complete-M : is-complete-Metric-Space M) where abstract reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : (δ : ℚ⁺) → (u v : cauchy-approximation-Metric-Space M) → neighborhood-Metric-Space ( M) ( δ) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( u)) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( v)) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( δ) ( u) ( v) reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space δ x y Nδ = reflects-neighborhoods-sim-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) { x} { const-cauchy-approximation-Metric-Space ( M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( x))} { y} { const-cauchy-approximation-Metric-Space ( M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( y))} ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( x)) ( sim-const-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( y)) ( δ) ( preserves-neighborhoods-map-isometry-Pseudometric-Space ( pseudometric-Metric-Space M) ( cauchy-pseudocompletion-Metric-Space M) ( isometry-cauchy-pseudocompletion-Metric-Space M) ( δ) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( x)) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( y)) ( Nδ)) is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : is-isometry-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( pseudometric-Metric-Space M) ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M)) is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space d x y = ( ( is-short-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M) ( d) ( x) ( y)) , ( reflects-neighborhoods-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( d) ( x) ( y))) isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space : isometry-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space M) ( pseudometric-Metric-Space M) isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space = ( ( map-lim-cauchy-pseudocompletion-is-complete-Metric-Space ( M) ( is-complete-M)) , ( is-isometry-map-lim-cauchy-pseudocompletion-is-complete-Metric-Space))
Recent changes
- 2025-12-25. malarbol. Refactor function actions on cauchy approximations (#1738).