The action on Cauchy approximations of isometries between pseudometric spaces
Content created by malarbol.
Created on 2025-12-25.
Last modified on 2025-12-25.
module metric-spaces.action-on-cauchy-approximations-isometries-pseudometric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.action-on-cauchy-approximations-short-maps-pseudometric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.short-functions-pseudometric-spaces
Idea
Isometries between pseudometric spaces act on Cauchy approximations and induce an isometry between the Cauchy pseudocompletions.
Definitions
The action of isometries on Cauchy approximations
module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') (f : isometry-Pseudometric-Space A B) where map-cauchy-approximation-isometry-Pseudometric-Space : cauchy-approximation-Pseudometric-Space A → cauchy-approximation-Pseudometric-Space B map-cauchy-approximation-isometry-Pseudometric-Space = map-cauchy-approximation-short-function-Pseudometric-Space ( A) ( B) ( short-isometry-Pseudometric-Space A B f)
Properties
The action of isometries on Cauchy approximations is an isometry
module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') (f : isometry-Pseudometric-Space A B) where abstract preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space : (d : ℚ⁺) → (x y : cauchy-approximation-Pseudometric-Space A) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( d) ( x) ( y) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space B) ( d) ( map-cauchy-approximation-isometry-Pseudometric-Space A B f x) ( map-cauchy-approximation-isometry-Pseudometric-Space A B f y) preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space = preserves-neighborhoods-map-cauchy-approximation-short-function-Pseudometric-Space ( A) ( B) ( short-isometry-Pseudometric-Space A B f) reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space : (d : ℚ⁺) → (x y : cauchy-approximation-Pseudometric-Space A) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space B) ( d) ( map-cauchy-approximation-isometry-Pseudometric-Space A B f x) ( map-cauchy-approximation-isometry-Pseudometric-Space A B f y) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( d) ( x) ( y) reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space d x y Nxy α β = reflects-neighborhoods-map-isometry-Pseudometric-Space ( A) ( B) ( f) ( α +ℚ⁺ β +ℚ⁺ d) ( map-cauchy-approximation-Pseudometric-Space A x α) ( map-cauchy-approximation-Pseudometric-Space A y β) ( Nxy α β) is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space : is-isometry-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( cauchy-pseudocompletion-Pseudometric-Space B) ( map-cauchy-approximation-isometry-Pseudometric-Space A B f) is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space d x y = ( ( preserves-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space ( d) ( x) ( y)) , ( reflects-neighborhoods-map-cauchy-approximation-isometry-Pseudometric-Space ( d) ( x) ( y))) module _ {l1 l2 l1' l2' : Level} (A : Pseudometric-Space l1 l2) (B : Pseudometric-Space l1' l2') (f : isometry-Pseudometric-Space A B) where isometry-map-cauchy-approximation-isometry-Pseudometric-Space : isometry-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space A) ( cauchy-pseudocompletion-Pseudometric-Space B) isometry-map-cauchy-approximation-isometry-Pseudometric-Space = ( map-cauchy-approximation-isometry-Pseudometric-Space A B f , is-isometry-map-cauchy-approximation-isometry-Pseudometric-Space A B f)
Recent changes
- 2025-12-25. malarbol. Refactor function actions on cauchy approximations (#1738).