The action on Cauchy approximations of short maps between metric spaces
Content created by malarbol.
Created on 2025-12-25.
Last modified on 2025-12-25.
module metric-spaces.action-on-cauchy-approximations-short-maps-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.action-on-cauchy-approximations-short-maps-pseudometric-spaces open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-pseudocompletion-of-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces open import metric-spaces.short-functions-pseudometric-spaces
Idea
Short maps between metric spaces act on cauchy approximations and induce a short map between the Cauchy pseudocompletions.
This action is functorial and preserves limits.
Definitions
The action of short maps on Cauchy approximations
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-function-Metric-Space A B) where short-map-cauchy-pseudocompletion-short-function-Metric-Space : short-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) short-map-cauchy-pseudocompletion-short-function-Metric-Space = short-map-cauchy-approximation-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f) map-cauchy-approximation-short-function-Metric-Space : cauchy-approximation-Metric-Space A → cauchy-approximation-Metric-Space B map-cauchy-approximation-short-function-Metric-Space = map-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) ( short-map-cauchy-pseudocompletion-short-function-Metric-Space) preserves-neighborhoods-map-cauchy-approximation-short-function-Metric-Space : is-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) ( map-cauchy-approximation-short-function-Metric-Space) preserves-neighborhoods-map-cauchy-approximation-short-function-Metric-Space = is-short-map-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) ( short-map-cauchy-pseudocompletion-short-function-Metric-Space)
Properties
Functoriality of the action of short maps
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where abstract htpy-id-map-cauchy-approximation-short-function-Metric-Space : map-cauchy-approximation-short-function-Metric-Space ( A) ( A) ( id-short-function-Metric-Space A) = id htpy-id-map-cauchy-approximation-short-function-Metric-Space = refl module _ {l1a l2a l1b l2b l1c l2c : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (C : Metric-Space l1c l2c) (g : short-function-Metric-Space B C) (f : short-function-Metric-Space A B) where abstract htpy-comp-map-cauchy-approximation-short-function-Metric-Space : ( map-cauchy-approximation-short-function-Metric-Space B C g ∘ map-cauchy-approximation-short-function-Metric-Space A B f) = ( map-cauchy-approximation-short-function-Metric-Space A C ( comp-short-function-Metric-Space A B C g f)) htpy-comp-map-cauchy-approximation-short-function-Metric-Space = refl
The action of short maps on Cauchy approximations preserves limits
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-function-Metric-Space A B) (a : cauchy-approximation-Metric-Space A) (lim : type-Metric-Space A) where abstract preserves-limit-map-cauchy-approximation-short-function-Metric-Space : is-limit-cauchy-approximation-Metric-Space A a lim → is-limit-cauchy-approximation-Metric-Space ( B) ( map-cauchy-approximation-short-function-Metric-Space A B f a) ( map-short-function-Metric-Space A B f lim) preserves-limit-map-cauchy-approximation-short-function-Metric-Space is-lim-a ε δ = is-short-map-short-function-Metric-Space A B ( f) ( ε +ℚ⁺ δ) ( map-cauchy-approximation-Metric-Space A a ε) ( lim) ( is-lim-a ε δ)
Recent changes
- 2025-12-25. malarbol. Refactor function actions on cauchy approximations (#1738).