Uniformly continuous real functions on proper closed intervals of real numbers
Content created by Louis Wasserman.
Created on 2026-01-07.
Last modified on 2026-01-07.
{-# OPTIONS --lossy-unification #-} module real-numbers.uniformly-continuous-real-functions-proper-closed-intervals-real-numbers where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.images open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.metric-spaces open import metric-spaces.uniformly-continuous-maps-metric-spaces open import real-numbers.apartness-real-numbers open import real-numbers.closed-intervals-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.subsets-real-numbers
Idea
A uniformly continuous function¶ from a proper closed interval in the real numbers to the real numbers always has its image contained in a closed interval.
Definition
is-ucont-prop-map-proper-closed-interval-ℝ : {l1 l2 l3 l4 : Level} ([a,b] : proper-closed-interval-ℝ l3 l4) → (type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) → Prop (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) is-ucont-prop-map-proper-closed-interval-ℝ {l1} {l2} [a,b] = is-uniformly-continuous-prop-map-Metric-Space ( metric-space-proper-closed-interval-ℝ l1 [a,b]) ( metric-space-ℝ l2) is-ucont-map-proper-closed-interval-ℝ : {l1 l2 l3 l4 : Level} ([a,b] : proper-closed-interval-ℝ l3 l4) → (type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) → UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4) is-ucont-map-proper-closed-interval-ℝ [a,b] f = type-Prop ( is-ucont-prop-map-proper-closed-interval-ℝ [a,b] f) ucont-map-proper-closed-interval-ℝ : (l1 l2 : Level) {l3 l4 : Level} → proper-closed-interval-ℝ l3 l4 → UU (lsuc (l1 ⊔ l2) ⊔ l3 ⊔ l4) ucont-map-proper-closed-interval-ℝ l1 l2 [a,b] = uniformly-continuous-map-Metric-Space ( metric-space-proper-closed-interval-ℝ l1 [a,b]) ( metric-space-ℝ l2)
Properties
The image of a uniformly continuous function on a proper closed interval
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : ucont-map-proper-closed-interval-ℝ l1 l2 [a,b]) where map-ucont-map-proper-closed-interval-ℝ : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2 map-ucont-map-proper-closed-interval-ℝ = pr1 f is-ucont-map-ucont-map-proper-closed-interval-ℝ : is-ucont-map-proper-closed-interval-ℝ ( [a,b]) ( map-ucont-map-proper-closed-interval-ℝ) is-ucont-map-ucont-map-proper-closed-interval-ℝ = pr2 f subset-im-ucont-map-proper-closed-interval-ℝ : subset-ℝ (lsuc (l1 ⊔ l2)) l2 subset-im-ucont-map-proper-closed-interval-ℝ = subtype-im map-ucont-map-proper-closed-interval-ℝ subspace-im-ucont-map-proper-closed-interval-ℝ : Metric-Space (lsuc (l1 ⊔ l2)) l2 subspace-im-ucont-map-proper-closed-interval-ℝ = metric-space-subset-ℝ ( subset-im-ucont-map-proper-closed-interval-ℝ)
To show a function on a proper closed interval of real numbers is uniformly continuous, it suffices to exhibit a modulus that applies when its arguments are apart
module _ {l1 l2 l3 l4 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) (f : type-proper-closed-interval-ℝ (l1 ⊔ l2 ⊔ l3) [a,b] → ℝ l4) (μ : ℚ⁺ → ℚ⁺) (H : (ε : ℚ⁺) (x y : type-proper-closed-interval-ℝ (l1 ⊔ l2 ⊔ l3) [a,b]) → apart-ℝ (pr1 x) (pr1 y) → neighborhood-ℝ _ (μ ε) (pr1 x) (pr1 y) → neighborhood-ℝ _ ε (f x) (f y)) where abstract is-ucont-map-modulus-apart-map-proper-closed-interval-ℝ : is-ucont-map-proper-closed-interval-ℝ [a,b] f is-ucont-map-modulus-apart-map-proper-closed-interval-ℝ = intro-exists ( μ ∘ modulus-le-double-le-ℚ⁺) ( λ x ε y Nxy → let (ε' , ε'+ε'<ε) = bound-double-le-ℚ⁺ ε open do-syntax-trunc-Prop (neighborhood-prop-ℝ l4 ε (f x) (f y)) in do (z , z#x , z#y , Nεzx , Nεzy) ← exists-element-apart-from-both-in-neighborhood-proper-closed-interval-ℝ ( l3) ( [a,b]) ( x) ( y) ( μ ε') ( Nxy) weakly-monotonic-neighborhood-ℝ ( f x) ( f y) ( ε' +ℚ⁺ ε') ( ε) ( leq-le-ℚ ε'+ε'<ε) ( is-triangular-neighborhood-ℝ ( f x) ( f z) ( f y) ( ε') ( ε') ( H ε' z y z#y Nεzy) ( H ( ε') ( x) ( z) ( symmetric-apart-ℝ z#x) ( is-symmetric-neighborhood-ℝ (μ ε') (pr1 z) (pr1 x) Nεzx))))
Recent changes
- 2026-01-07. Louis Wasserman. Uniformly continuous functions on proper closed intervals in the real numbers (#1773).