Retracts of maps
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-11-09.
Last modified on 2024-05-23.
module foundation.retracts-of-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.commuting-prisms-of-maps open import foundation.commuting-triangles-of-morphisms-arrows open import foundation.dependent-pair-types open import foundation.diagonal-maps-of-types open import foundation.function-extensionality open import foundation.functoriality-fibers-of-maps open import foundation.homotopies-morphisms-arrows open import foundation.homotopy-algebra open import foundation.morphisms-arrows open import foundation.postcomposition-functions open import foundation.precomposition-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-maps open import foundation-core.constant-maps open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.retractions open import foundation-core.retracts-of-types open import foundation-core.sections
Idea
A map f : A → B
is said to be a retract of a map g : X → Y
if it is a
retract in the arrow category of types. In other words, f
is a retract of g
if there are morphisms of arrows i : f → g
and r : g → f
equipped with a homotopy of morphisms of arrows r ∘ i ~ id
.
More explicitly, it consists of retracts A
of X
and B
of Y
that fit into a commutative diagram
i₀ r₀
A ------> X ------> A
| | |
f | i | g r | f
∨ ∨ ∨
B ------> Y ------> B
i₁ r₁
with coherences
i : i₁ ∘ f ~ g ∘ i₀ and r : r₁ ∘ g ~ f ∘ r₀
witnessing that the left and right squares commute, and a higher coherence
r ·r i₀
r₁ ∘ g ∘ i₀ ----------> f ∘ r₀ ∘ i₀
| |
| |
r₁ ·l i⁻¹ | L | f ·l H₀
| |
∨ ∨
r₁ ∘ i₁ ∘ f ---------------> f
H₁ ·r f
witnessing that the
square of homotopies commutes,
where H₀
and H₁
are the retracting homotopies of r₀ ∘ i₀
and r₁ ∘ i₁
respectively.
This coherence requirement arises from the implicit requirement that the total pasting of the retraction square should restrict to the reflexivity homotopy on the square
A ========= A
| |
f | refl-htpy | f
∨ ∨
B ========= B,
as we are asking for the morphisms to compose to the identity morphism of arrows.
Definition
The predicate of being a retraction of a morphism of arrows
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (i : hom-arrow f g) (r : hom-arrow g f) where is-retraction-hom-arrow : UU (l1 ⊔ l2) is-retraction-hom-arrow = coherence-triangle-hom-arrow' f g f id-hom-arrow r i
The type of retractions of a morphism of arrows
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (i : hom-arrow f g) where retraction-hom-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) retraction-hom-arrow = Σ (hom-arrow g f) (is-retraction-hom-arrow f g i) module _ (r : retraction-hom-arrow) where hom-retraction-hom-arrow : hom-arrow g f hom-retraction-hom-arrow = pr1 r is-retraction-hom-retraction-hom-arrow : is-retraction-hom-arrow f g i hom-retraction-hom-arrow is-retraction-hom-retraction-hom-arrow = pr2 r
The predicate that a morphism f
is a retract of a morphism g
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} where retract-map : (g : X → Y) (f : A → B) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) retract-map g f = Σ (hom-arrow f g) (retraction-hom-arrow f g)
The higher coherence in the definition of retracts of maps
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (i : hom-arrow f g) (r : hom-arrow g f) (H : is-retraction (map-domain-hom-arrow f g i) (map-domain-hom-arrow g f r)) (H' : is-retraction ( map-codomain-hom-arrow f g i) ( map-codomain-hom-arrow g f r)) where coherence-retract-map : UU (l1 ⊔ l2) coherence-retract-map = coherence-htpy-hom-arrow f f (comp-hom-arrow f g f r i) id-hom-arrow H H'
The binary relation f g ↦ f retract-of-map g
asserting that f
is a retract of the map g
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where infix 6 _retract-of-map_ _retract-of-map_ : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) _retract-of-map_ = retract-map g f module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) where inclusion-retract-map : hom-arrow f g inclusion-retract-map = pr1 R map-domain-inclusion-retract-map : A → X map-domain-inclusion-retract-map = map-domain-hom-arrow f g inclusion-retract-map map-codomain-inclusion-retract-map : B → Y map-codomain-inclusion-retract-map = map-codomain-hom-arrow f g inclusion-retract-map coh-inclusion-retract-map : coherence-square-maps ( map-domain-inclusion-retract-map) ( f) ( g) ( map-codomain-inclusion-retract-map) coh-inclusion-retract-map = coh-hom-arrow f g inclusion-retract-map retraction-retract-map : retraction-hom-arrow f g inclusion-retract-map retraction-retract-map = pr2 R hom-retraction-retract-map : hom-arrow g f hom-retraction-retract-map = hom-retraction-hom-arrow f g inclusion-retract-map retraction-retract-map map-domain-hom-retraction-retract-map : X → A map-domain-hom-retraction-retract-map = map-domain-hom-arrow g f hom-retraction-retract-map map-codomain-hom-retraction-retract-map : Y → B map-codomain-hom-retraction-retract-map = map-codomain-hom-arrow g f hom-retraction-retract-map coh-hom-retraction-retract-map : coherence-square-maps ( map-domain-hom-retraction-retract-map) ( g) ( f) ( map-codomain-hom-retraction-retract-map) coh-hom-retraction-retract-map = coh-hom-arrow g f hom-retraction-retract-map is-retraction-hom-retraction-retract-map : is-retraction-hom-arrow f g inclusion-retract-map hom-retraction-retract-map is-retraction-hom-retraction-retract-map = is-retraction-hom-retraction-hom-arrow f g ( inclusion-retract-map) ( retraction-retract-map) is-retraction-map-domain-hom-retraction-retract-map : is-retraction ( map-domain-inclusion-retract-map) ( map-domain-hom-retraction-retract-map) is-retraction-map-domain-hom-retraction-retract-map = htpy-domain-htpy-hom-arrow f f ( comp-hom-arrow f g f hom-retraction-retract-map inclusion-retract-map) ( id-hom-arrow) ( is-retraction-hom-retraction-retract-map) retract-domain-retract-map : A retract-of X pr1 retract-domain-retract-map = map-domain-inclusion-retract-map pr1 (pr2 retract-domain-retract-map) = map-domain-hom-retraction-retract-map pr2 (pr2 retract-domain-retract-map) = is-retraction-map-domain-hom-retraction-retract-map is-retraction-map-codomain-hom-retraction-retract-map : is-retraction ( map-codomain-inclusion-retract-map) ( map-codomain-hom-retraction-retract-map) is-retraction-map-codomain-hom-retraction-retract-map = htpy-codomain-htpy-hom-arrow f f ( comp-hom-arrow f g f hom-retraction-retract-map inclusion-retract-map) ( id-hom-arrow) ( is-retraction-hom-retraction-retract-map) retract-codomain-retract-map : B retract-of Y pr1 retract-codomain-retract-map = map-codomain-inclusion-retract-map pr1 (pr2 retract-codomain-retract-map) = map-codomain-hom-retraction-retract-map pr2 (pr2 retract-codomain-retract-map) = is-retraction-map-codomain-hom-retraction-retract-map coh-retract-map : coherence-retract-map f g ( inclusion-retract-map) ( hom-retraction-retract-map) ( is-retraction-map-domain-hom-retraction-retract-map) ( is-retraction-map-codomain-hom-retraction-retract-map) coh-retract-map = coh-htpy-hom-arrow f f ( comp-hom-arrow f g f hom-retraction-retract-map inclusion-retract-map) ( id-hom-arrow) ( is-retraction-hom-retraction-retract-map)
Properties
Retracts of maps with sections have sections
In fact, we only need the following data to show this:
r₀
X ------> A
| |
g | r | f
∨ ∨
B ------> Y ------> B.
i₁ H₁ r₁
Proof: Note that f
is the right map of a triangle
r₀
X ------> A
\ /
r₁ ∘ g \ / f
\ /
∨ ∨
B.
Since both r₁
and g
are assumed to have
sections, it follows that the composite r₁ ∘ g
has a section, and therefore f
has a section.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (r₀ : X → A) (R₁ : B retract-of Y) (r : coherence-square-maps r₀ g f (map-retraction-retract R₁)) (s : section g) where section-retract-map-section' : section f section-retract-map-section' = section-right-map-triangle ( map-retraction-retract R₁ ∘ g) ( f) ( r₀) ( r) ( section-comp (map-retraction-retract R₁) g s (section-retract R₁)) module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) where section-retract-map-section : section g → section f section-retract-map-section = section-retract-map-section' f g ( map-domain-hom-retraction-retract-map f g R) ( retract-codomain-retract-map f g R) ( coh-hom-retraction-retract-map f g R)
Retracts of maps with retractions have retractions
In fact, we only need the following data to show this:
i₀ H r₀
A ------> X ------> A
| |
f | i | g
∨ ∨
B ------> Y.
i₁
Proof: Note that f
is the top map in the triangle
f
A ------> B
\ /
g ∘ i₀ \ / i₁
\ /
∨ ∨
Y.
Since both g
and i₀
are assumed to have retractions, it follows that
g ∘ i₀
has a retraction, and hence that f
has a retraction.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R₀ : A retract-of X) (i₁ : B → Y) (i : coherence-square-maps (inclusion-retract R₀) f g i₁) (s : retraction g) where retraction-retract-map-retraction' : retraction f retraction-retract-map-retraction' = retraction-top-map-triangle ( g ∘ inclusion-retract R₀) ( i₁) ( f) ( inv-htpy i) ( retraction-comp g (inclusion-retract R₀) s (retraction-retract R₀)) module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) where retraction-retract-map-retraction : retraction g → retraction f retraction-retract-map-retraction = retraction-retract-map-retraction' f g ( retract-domain-retract-map f g R) ( map-codomain-inclusion-retract-map f g R) ( coh-inclusion-retract-map f g R)
Equivalences are closed under retracts of maps
We may observe that the higher coherence of a retract of maps is not needed.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R₀ : A retract-of X) (R₁ : B retract-of Y) (i : coherence-square-maps (inclusion-retract R₀) f g (inclusion-retract R₁)) (r : coherence-square-maps ( map-retraction-retract R₀) ( g) ( f) ( map-retraction-retract R₁)) (H : is-equiv g) where is-equiv-retract-map-is-equiv' : is-equiv f pr1 is-equiv-retract-map-is-equiv' = section-retract-map-section' f g ( map-retraction-retract R₀) ( R₁) ( r) ( section-is-equiv H) pr2 is-equiv-retract-map-is-equiv' = retraction-retract-map-retraction' f g ( R₀) ( inclusion-retract R₁) ( i) ( retraction-is-equiv H) module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) (H : is-equiv g) where section-retract-map-is-equiv : section f section-retract-map-is-equiv = section-retract-map-section f g R (section-is-equiv H) retraction-retract-map-is-equiv : retraction f retraction-retract-map-is-equiv = retraction-retract-map-retraction f g R (retraction-is-equiv H) is-equiv-retract-map-is-equiv : is-equiv f pr1 is-equiv-retract-map-is-equiv = section-retract-map-is-equiv pr2 is-equiv-retract-map-is-equiv = retraction-retract-map-is-equiv
If f
is a retract of g
, then the fiber inclusions of f
are retracts of the fiber inclusions of g
Consider a retract f : A → B
of a map g : X → Y
, as indicated in the bottom
row of squares in the diagram below.
j s
fiber f b -----> fiber g (i₁ b) -----> fiber f b
| | |
| i' | r' |
∨ ∨ ∨
A ----- i₀ -----> X ------- r₀ ------> A
| | |
f | i | g r | f
∨ ∨ ∨
B --------------> Y -----------------> B
i₁ r₁
Then we claim that the fiber inclusion
fiber f b → A
is a retract of the fiber inclusion fiber g (i' x) → X
.
Proof: By functoriality of fibers of maps we obtain a commuting diagram
j s ≃
fiber f b -----> fiber g (i₁ b) -----> fiber f (r₀ (i₀ b)) -----> fiber f b
| | | |
| i' | r' | |
∨ ∨ ∨ ∨
A --------------> X --------------------> A ---------------------> A
i₀ r₀ id
which is homotopic to the identity morphism of arrows. We then finish off the proof with the following steps:
- We reassociate the composition of morphisms of fibers, which is associated in
the above diagram as
□ (□ □)
. - Then we use that
hom-arrow-fiber
preserves composition. - Next, we apply the action on
htpy-hom-arrow
offiber
. - Finally, we use that
hom-arrow-fiber
preserves identity morphisms of arrows.
While each of these steps are very simple to formalize, the operations that are involved take a lot of arguments and therefore the code is somewhat lengthy.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) (b : B) where inclusion-retract-map-inclusion-fiber-retract-map : hom-arrow ( inclusion-fiber f {b}) ( inclusion-fiber g {map-codomain-inclusion-retract-map f g R b}) inclusion-retract-map-inclusion-fiber-retract-map = hom-arrow-fiber f g (inclusion-retract-map f g R) b hom-retraction-retract-map-inclusion-fiber-retract-map : hom-arrow ( inclusion-fiber g {map-codomain-inclusion-retract-map f g R b}) ( inclusion-fiber f {b}) hom-retraction-retract-map-inclusion-fiber-retract-map = comp-hom-arrow ( inclusion-fiber g) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( hom-arrow-fiber g f ( hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R b)) is-retraction-hom-retraction-retract-map-inclusion-fiber-retract-map : is-retraction-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-retract-map-inclusion-fiber-retract-map) ( hom-retraction-retract-map-inclusion-fiber-retract-map) is-retraction-hom-retraction-retract-map-inclusion-fiber-retract-map = concat-htpy-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber f) ( comp-hom-arrow ( inclusion-fiber g) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( hom-arrow-fiber g f ( hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R b))) ( inclusion-retract-map-inclusion-fiber-retract-map)) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber f) ( hom-arrow-fiber g f ( hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R b)) ( inclusion-retract-map-inclusion-fiber-retract-map))) ( id-hom-arrow) ( inv-assoc-comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( hom-arrow-fiber g f ( hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R b)) ( inclusion-retract-map-inclusion-fiber-retract-map)) ( concat-htpy-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber f) ( hom-arrow-fiber g f ( hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R b)) ( inclusion-retract-map-inclusion-fiber-retract-map))) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( hom-arrow-fiber f f ( comp-hom-arrow f g f ( hom-retraction-retract-map f g R) ( inclusion-retract-map f g R)) ( b))) ( id-hom-arrow) ( left-whisker-comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber f) ( hom-arrow-fiber g f ( hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R b)) ( hom-arrow-fiber f g (inclusion-retract-map f g R) b)) ( hom-arrow-fiber f f ( comp-hom-arrow f g f ( hom-retraction-retract-map f g R) ( inclusion-retract-map f g R)) ( b)) ( inv-htpy-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( hom-arrow-fiber f f ( comp-hom-arrow f g f ( hom-retraction-retract-map f g R) ( inclusion-retract-map f g R)) ( b)) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber f) ( hom-arrow-fiber g f ( hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R b)) ( hom-arrow-fiber f g (inclusion-retract-map f g R) b)) ( preserves-comp-hom-arrow-fiber f g f ( hom-retraction-retract-map f g R) ( inclusion-retract-map f g R) ( b)))) ( concat-htpy-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( inclusion-fiber f) ( tr-hom-arrow-inclusion-fiber f ( is-retraction-map-codomain-hom-retraction-retract-map f g R b)) ( hom-arrow-fiber f f ( comp-hom-arrow f g f ( hom-retraction-retract-map f g R) ( inclusion-retract-map f g R)) ( b))) ( hom-arrow-fiber f f id-hom-arrow b) ( id-hom-arrow) ( htpy-hom-arrow-fiber f f ( comp-hom-arrow f g f ( hom-retraction-retract-map f g R) ( inclusion-retract-map f g R)) ( id-hom-arrow) ( is-retraction-hom-retraction-retract-map f g R) ( b)) ( preserves-id-hom-arrow-fiber f b))) retract-map-inclusion-fiber-retract-map : retract-map ( inclusion-fiber g {map-codomain-inclusion-retract-map f g R b}) ( inclusion-fiber f {b}) pr1 retract-map-inclusion-fiber-retract-map = inclusion-retract-map-inclusion-fiber-retract-map pr1 (pr2 retract-map-inclusion-fiber-retract-map) = hom-retraction-retract-map-inclusion-fiber-retract-map pr2 (pr2 retract-map-inclusion-fiber-retract-map) = is-retraction-hom-retraction-retract-map-inclusion-fiber-retract-map
If f
is a retract of g
, then the fibers of f
are retracts of the fibers of g
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) (b : B) where retract-fiber-retract-map : retract ( fiber g (map-codomain-inclusion-retract-map f g R b)) ( fiber f b) retract-fiber-retract-map = retract-domain-retract-map ( inclusion-fiber f) ( inclusion-fiber g) ( retract-map-inclusion-fiber-retract-map f g R b)
If f
is a retract of g
, then - ∘ f
is a retract of - ∘ g
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) (S : UU l5) where inclusion-precomp-retract-map : hom-arrow (precomp f S) (precomp g S) inclusion-precomp-retract-map = precomp-hom-arrow g f (hom-retraction-retract-map f g R) S hom-retraction-precomp-retract-map : hom-arrow (precomp g S) (precomp f S) hom-retraction-precomp-retract-map = precomp-hom-arrow f g (inclusion-retract-map f g R) S is-retraction-map-domain-precomp-retract-map : is-retraction ( map-domain-hom-arrow ( precomp f S) ( precomp g S) ( inclusion-precomp-retract-map)) ( map-domain-hom-arrow ( precomp g S) ( precomp f S) ( hom-retraction-precomp-retract-map)) is-retraction-map-domain-precomp-retract-map = htpy-precomp (is-retraction-map-codomain-hom-retraction-retract-map f g R) S is-retraction-map-codomain-precomp-retract-map : is-retraction ( map-codomain-hom-arrow ( precomp f S) ( precomp g S) ( inclusion-precomp-retract-map)) ( map-codomain-hom-arrow ( precomp g S) ( precomp f S) ( hom-retraction-precomp-retract-map)) is-retraction-map-codomain-precomp-retract-map = htpy-precomp (is-retraction-map-domain-hom-retraction-retract-map f g R) S coh-retract-precomp-retract-map : coherence-retract-map ( precomp f S) ( precomp g S) ( inclusion-precomp-retract-map) ( hom-retraction-precomp-retract-map) ( is-retraction-map-domain-precomp-retract-map) ( is-retraction-map-codomain-precomp-retract-map) coh-retract-precomp-retract-map = ( precomp-vertical-coherence-prism-inv-triangles-maps ( id) ( map-domain-hom-retraction-retract-map f g R) ( map-domain-inclusion-retract-map f g R) ( id) ( map-codomain-hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R) ( f) ( g) ( f) ( is-retraction-map-domain-hom-retraction-retract-map f g R) ( refl-htpy) ( coh-hom-retraction-retract-map f g R) ( coh-inclusion-retract-map f g R) ( is-retraction-map-codomain-hom-retraction-retract-map f g R) ( coh-retract-map f g R) ( S)) ∙h ( ap-concat-htpy ( is-retraction-map-codomain-precomp-retract-map ·r precomp f S) ( λ x → ap inv (eq-htpy-refl-htpy (precomp f S x)))) is-retraction-hom-retraction-precomp-retract-map : is-retraction-hom-arrow ( precomp f S) ( precomp g S) ( inclusion-precomp-retract-map) ( hom-retraction-precomp-retract-map) pr1 is-retraction-hom-retraction-precomp-retract-map = is-retraction-map-domain-precomp-retract-map pr1 (pr2 is-retraction-hom-retraction-precomp-retract-map) = is-retraction-map-codomain-precomp-retract-map pr2 (pr2 is-retraction-hom-retraction-precomp-retract-map) = coh-retract-precomp-retract-map retraction-precomp-retract-map : retraction-hom-arrow ( precomp f S) ( precomp g S) ( inclusion-precomp-retract-map) pr1 retraction-precomp-retract-map = hom-retraction-precomp-retract-map pr2 retraction-precomp-retract-map = is-retraction-hom-retraction-precomp-retract-map retract-map-precomp-retract-map : (precomp f S) retract-of-map (precomp g S) pr1 retract-map-precomp-retract-map = inclusion-precomp-retract-map pr2 retract-map-precomp-retract-map = retraction-precomp-retract-map
If f
is a retract of g
, then f ∘ -
is a retract of g ∘ -
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) (S : UU l5) where inclusion-postcomp-retract-map : hom-arrow (postcomp S f) (postcomp S g) inclusion-postcomp-retract-map = postcomp-hom-arrow f g (inclusion-retract-map f g R) S hom-retraction-postcomp-retract-map : hom-arrow (postcomp S g) (postcomp S f) hom-retraction-postcomp-retract-map = postcomp-hom-arrow g f (hom-retraction-retract-map f g R) S is-retraction-map-domain-postcomp-retract-map : is-retraction ( map-domain-hom-arrow ( postcomp S f) ( postcomp S g) ( inclusion-postcomp-retract-map)) ( map-domain-hom-arrow ( postcomp S g) ( postcomp S f) ( hom-retraction-postcomp-retract-map)) is-retraction-map-domain-postcomp-retract-map = htpy-postcomp S (is-retraction-map-domain-hom-retraction-retract-map f g R) is-retraction-map-codomain-postcomp-retract-map : is-retraction ( map-codomain-hom-arrow ( postcomp S f) ( postcomp S g) ( inclusion-postcomp-retract-map)) ( map-codomain-hom-arrow ( postcomp S g) ( postcomp S f) ( hom-retraction-postcomp-retract-map)) is-retraction-map-codomain-postcomp-retract-map = htpy-postcomp S ( is-retraction-map-codomain-hom-retraction-retract-map f g R) coh-retract-postcomp-retract-map : coherence-retract-map ( postcomp S f) ( postcomp S g) ( inclusion-postcomp-retract-map) ( hom-retraction-postcomp-retract-map) ( is-retraction-map-domain-postcomp-retract-map) ( is-retraction-map-codomain-postcomp-retract-map) coh-retract-postcomp-retract-map = ( postcomp-vertical-coherence-prism-inv-triangles-maps ( id) ( map-domain-hom-retraction-retract-map f g R) ( map-domain-inclusion-retract-map f g R) ( id) ( map-codomain-hom-retraction-retract-map f g R) ( map-codomain-inclusion-retract-map f g R) ( f) ( g) ( f) ( is-retraction-map-domain-hom-retraction-retract-map f g R) ( refl-htpy) ( coh-hom-retraction-retract-map f g R) ( coh-inclusion-retract-map f g R) ( is-retraction-map-codomain-hom-retraction-retract-map f g R) ( coh-retract-map f g R) ( S)) ∙h ( ap-concat-htpy ( is-retraction-map-codomain-postcomp-retract-map ·r postcomp S f) ( eq-htpy-refl-htpy ∘ postcomp S f)) is-retraction-hom-retraction-postcomp-retract-map : is-retraction-hom-arrow ( postcomp S f) ( postcomp S g) ( inclusion-postcomp-retract-map) ( hom-retraction-postcomp-retract-map) pr1 is-retraction-hom-retraction-postcomp-retract-map = is-retraction-map-domain-postcomp-retract-map pr1 (pr2 is-retraction-hom-retraction-postcomp-retract-map) = is-retraction-map-codomain-postcomp-retract-map pr2 (pr2 is-retraction-hom-retraction-postcomp-retract-map) = coh-retract-postcomp-retract-map retraction-postcomp-retract-map : retraction-hom-arrow ( postcomp S f) ( postcomp S g) ( inclusion-postcomp-retract-map) pr1 retraction-postcomp-retract-map = hom-retraction-postcomp-retract-map pr2 retraction-postcomp-retract-map = is-retraction-hom-retraction-postcomp-retract-map retract-map-postcomp-retract-map : (postcomp S f) retract-of-map (postcomp S g) pr1 retract-map-postcomp-retract-map = inclusion-postcomp-retract-map pr2 retract-map-postcomp-retract-map = retraction-postcomp-retract-map
If A
is a retract of B
and S
is a retract of T
then diagonal-exponential A S
is a retract of diagonal-exponential B T
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {S : UU l3} {T : UU l4} (R : A retract-of B) (Q : S retract-of T) where inclusion-diagonal-exponential-retract : hom-arrow (diagonal-exponential A S) (diagonal-exponential B T) inclusion-diagonal-exponential-retract = ( inclusion-retract R , precomp (map-retraction-retract Q) B ∘ postcomp S (inclusion-retract R) , refl-htpy) hom-retraction-diagonal-exponential-retract : hom-arrow (diagonal-exponential B T) (diagonal-exponential A S) hom-retraction-diagonal-exponential-retract = ( map-retraction-retract R , postcomp S (map-retraction-retract R) ∘ precomp (inclusion-retract Q) B , refl-htpy) coh-retract-map-diagonal-exponential-retract : coherence-retract-map ( diagonal-exponential A S) ( diagonal-exponential B T) ( inclusion-diagonal-exponential-retract) ( hom-retraction-diagonal-exponential-retract) ( is-retraction-map-retraction-retract R) ( horizontal-concat-htpy ( htpy-postcomp S (is-retraction-map-retraction-retract R)) ( htpy-precomp (is-retraction-map-retraction-retract Q) A)) coh-retract-map-diagonal-exponential-retract x = ( compute-eq-htpy-ap-diagonal-exponential S ( map-retraction-retract R (inclusion-retract R x)) ( x) ( is-retraction-map-retraction-retract R x)) ∙ ( ap ( λ p → ( ap (λ f a → map-retraction-retract R (inclusion-retract R (f a))) p) ∙ ( eq-htpy (λ _ → is-retraction-map-retraction-retract R x))) ( inv ( ( ap ( eq-htpy) ( eq-htpy (ap-const x ·r is-retraction-map-retraction-retract Q))) ∙ ( eq-htpy-refl-htpy (diagonal-exponential A S x))))) ∙ ( inv right-unit) is-retraction-hom-retraction-diagonal-exponential-retract : is-retraction-hom-arrow ( diagonal-exponential A S) ( diagonal-exponential B T) ( inclusion-diagonal-exponential-retract) ( hom-retraction-diagonal-exponential-retract) is-retraction-hom-retraction-diagonal-exponential-retract = ( ( is-retraction-map-retraction-retract R) , ( horizontal-concat-htpy ( htpy-postcomp S (is-retraction-map-retraction-retract R)) ( htpy-precomp (is-retraction-map-retraction-retract Q) A)) , ( coh-retract-map-diagonal-exponential-retract)) retract-map-diagonal-exponential-retract : (diagonal-exponential A S) retract-of-map (diagonal-exponential B T) retract-map-diagonal-exponential-retract = ( inclusion-diagonal-exponential-retract , hom-retraction-diagonal-exponential-retract , is-retraction-hom-retraction-diagonal-exponential-retract)
References
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
External links
- Retracts in arrow categories at Lab
A wikidata identifier was not available for this concept.
Recent changes
- 2024-05-23. Fredrik Bakke. Null maps, null types and null type families (#1088).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-03-22. Fredrik Bakke. Additions to cartesian morphisms (#1087).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).