Retracts of maps

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-11-09.
Last modified on 2024-05-23.

module foundation.retracts-of-maps where
Imports
open import foundation.action-on-identifications-functions
open import foundation.commuting-prisms-of-maps
open import foundation.commuting-triangles-of-morphisms-arrows
open import foundation.dependent-pair-types
open import foundation.diagonal-maps-of-types
open import foundation.function-extensionality
open import foundation.functoriality-fibers-of-maps
open import foundation.homotopies-morphisms-arrows
open import foundation.homotopy-algebra
open import foundation.morphisms-arrows
open import foundation.postcomposition-functions
open import foundation.precomposition-functions
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import foundation-core.commuting-squares-of-maps
open import foundation-core.constant-maps
open import foundation-core.equivalences
open import foundation-core.fibers-of-maps
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.retractions
open import foundation-core.retracts-of-types
open import foundation-core.sections

Idea

A map f : A → B is said to be a retract of a map g : X → Y if it is a retract in the arrow category of types. In other words, f is a retract of g if there are morphisms of arrows i : f → g and r : g → f equipped with a homotopy of morphisms of arrows r ∘ i ~ id.

More explicitly, it consists of retracts A of X and B of Y that fit into a commutative diagram

         i₀        r₀
    A ------> X ------> A
    |         |         |
  f |    i    | g   r   | f
    ∨         ∨         ∨
    B ------> Y ------> B
         i₁        r₁

with coherences

  i : i₁ ∘ f ~ g ∘ i₀  and   r : r₁ ∘ g ~ f ∘ r₀

witnessing that the left and right squares commute, and a higher coherence

                     r ·r i₀
       r₁ ∘ g ∘ i₀ ----------> f ∘ r₀ ∘ i₀
            |                      |
            |                      |
  r₁ ·l i⁻¹ |          L           | f ·l H₀
            |                      |
            ∨                      ∨
      r₁ ∘ i₁ ∘ f ---------------> f
                       H₁ ·r f

witnessing that the square of homotopies commutes, where H₀ and H₁ are the retracting homotopies of r₀ ∘ i₀ and r₁ ∘ i₁ respectively.

This coherence requirement arises from the implicit requirement that the total pasting of the retraction square should restrict to the reflexivity homotopy on the square

    A ========= A
    |           |
  f | refl-htpy | f
    ∨           ∨
    B ========= B,

as we are asking for the morphisms to compose to the identity morphism of arrows.

Definition

The predicate of being a retraction of a morphism of arrows

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (i : hom-arrow f g) (r : hom-arrow g f)
  where

  is-retraction-hom-arrow : UU (l1  l2)
  is-retraction-hom-arrow = coherence-triangle-hom-arrow' f g f id-hom-arrow r i

The type of retractions of a morphism of arrows

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (i : hom-arrow f g)
  where

  retraction-hom-arrow : UU (l1  l2  l3  l4)
  retraction-hom-arrow = Σ (hom-arrow g f) (is-retraction-hom-arrow f g i)

  module _
    (r : retraction-hom-arrow)
    where

    hom-retraction-hom-arrow : hom-arrow g f
    hom-retraction-hom-arrow = pr1 r

    is-retraction-hom-retraction-hom-arrow :
      is-retraction-hom-arrow f g i hom-retraction-hom-arrow
    is-retraction-hom-retraction-hom-arrow = pr2 r

The predicate that a morphism f is a retract of a morphism g

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  where

  retract-map : (g : X  Y) (f : A  B)  UU (l1  l2  l3  l4)
  retract-map g f = Σ (hom-arrow f g) (retraction-hom-arrow f g)

The higher coherence in the definition of retracts of maps

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (i : hom-arrow f g) (r : hom-arrow g f)
  (H : is-retraction (map-domain-hom-arrow f g i) (map-domain-hom-arrow g f r))
  (H' :
    is-retraction
      ( map-codomain-hom-arrow f g i)
      ( map-codomain-hom-arrow g f r))
  where

  coherence-retract-map : UU (l1  l2)
  coherence-retract-map =
    coherence-htpy-hom-arrow f f (comp-hom-arrow f g f r i) id-hom-arrow H H'

The binary relation f g ↦ f retract-of-map g asserting that f is a retract of the map g

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y)
  where

  infix 6 _retract-of-map_

  _retract-of-map_ : UU (l1  l2  l3  l4)
  _retract-of-map_ = retract-map g f

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g)
  where

  inclusion-retract-map : hom-arrow f g
  inclusion-retract-map = pr1 R

  map-domain-inclusion-retract-map : A  X
  map-domain-inclusion-retract-map =
    map-domain-hom-arrow f g inclusion-retract-map

  map-codomain-inclusion-retract-map : B  Y
  map-codomain-inclusion-retract-map =
    map-codomain-hom-arrow f g inclusion-retract-map

  coh-inclusion-retract-map :
    coherence-square-maps
      ( map-domain-inclusion-retract-map)
      ( f)
      ( g)
      ( map-codomain-inclusion-retract-map)
  coh-inclusion-retract-map =
    coh-hom-arrow f g inclusion-retract-map

  retraction-retract-map : retraction-hom-arrow f g inclusion-retract-map
  retraction-retract-map = pr2 R

  hom-retraction-retract-map : hom-arrow g f
  hom-retraction-retract-map =
    hom-retraction-hom-arrow f g inclusion-retract-map retraction-retract-map

  map-domain-hom-retraction-retract-map : X  A
  map-domain-hom-retraction-retract-map =
    map-domain-hom-arrow g f hom-retraction-retract-map

  map-codomain-hom-retraction-retract-map : Y  B
  map-codomain-hom-retraction-retract-map =
    map-codomain-hom-arrow g f hom-retraction-retract-map

  coh-hom-retraction-retract-map :
    coherence-square-maps
      ( map-domain-hom-retraction-retract-map)
      ( g)
      ( f)
      ( map-codomain-hom-retraction-retract-map)
  coh-hom-retraction-retract-map =
    coh-hom-arrow g f hom-retraction-retract-map

  is-retraction-hom-retraction-retract-map :
    is-retraction-hom-arrow f g inclusion-retract-map hom-retraction-retract-map
  is-retraction-hom-retraction-retract-map =
    is-retraction-hom-retraction-hom-arrow f g
      ( inclusion-retract-map)
      ( retraction-retract-map)

  is-retraction-map-domain-hom-retraction-retract-map :
    is-retraction
      ( map-domain-inclusion-retract-map)
      ( map-domain-hom-retraction-retract-map)
  is-retraction-map-domain-hom-retraction-retract-map =
    htpy-domain-htpy-hom-arrow f f
      ( comp-hom-arrow f g f hom-retraction-retract-map inclusion-retract-map)
      ( id-hom-arrow)
      ( is-retraction-hom-retraction-retract-map)

  retract-domain-retract-map :
    A retract-of X
  pr1 retract-domain-retract-map =
    map-domain-inclusion-retract-map
  pr1 (pr2 retract-domain-retract-map) =
    map-domain-hom-retraction-retract-map
  pr2 (pr2 retract-domain-retract-map) =
    is-retraction-map-domain-hom-retraction-retract-map

  is-retraction-map-codomain-hom-retraction-retract-map :
    is-retraction
      ( map-codomain-inclusion-retract-map)
      ( map-codomain-hom-retraction-retract-map)
  is-retraction-map-codomain-hom-retraction-retract-map =
    htpy-codomain-htpy-hom-arrow f f
      ( comp-hom-arrow f g f hom-retraction-retract-map inclusion-retract-map)
      ( id-hom-arrow)
      ( is-retraction-hom-retraction-retract-map)

  retract-codomain-retract-map : B retract-of Y
  pr1 retract-codomain-retract-map =
    map-codomain-inclusion-retract-map
  pr1 (pr2 retract-codomain-retract-map) =
    map-codomain-hom-retraction-retract-map
  pr2 (pr2 retract-codomain-retract-map) =
    is-retraction-map-codomain-hom-retraction-retract-map

  coh-retract-map :
    coherence-retract-map f g
      ( inclusion-retract-map)
      ( hom-retraction-retract-map)
      ( is-retraction-map-domain-hom-retraction-retract-map)
      ( is-retraction-map-codomain-hom-retraction-retract-map)
  coh-retract-map =
    coh-htpy-hom-arrow f f
      ( comp-hom-arrow f g f hom-retraction-retract-map inclusion-retract-map)
      ( id-hom-arrow)
      ( is-retraction-hom-retraction-retract-map)

Properties

Retracts of maps with sections have sections

In fact, we only need the following data to show this:

                 r₀
            X ------> A
            |         |
          g |    r    | f
            ∨         ∨
  B ------> Y ------> B.
       i₁   H₁   r₁

Proof: Note that f is the right map of a triangle

            r₀
       X ------> A
        \       /
  r₁ ∘ g \     / f
          \   /
           ∨ ∨
            B.

Since both r₁ and g are assumed to have sections, it follows that the composite r₁ ∘ g has a section, and therefore f has a section.

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (r₀ : X  A) (R₁ : B retract-of Y)
  (r : coherence-square-maps r₀ g f (map-retraction-retract R₁))
  (s : section g)
  where

  section-retract-map-section' : section f
  section-retract-map-section' =
    section-right-map-triangle
      ( map-retraction-retract R₁  g)
      ( f)
      ( r₀)
      ( r)
      ( section-comp (map-retraction-retract R₁) g s (section-retract R₁))

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g)
  where

  section-retract-map-section : section g  section f
  section-retract-map-section =
    section-retract-map-section' f g
      ( map-domain-hom-retraction-retract-map f g R)
      ( retract-codomain-retract-map f g R)
      ( coh-hom-retraction-retract-map f g R)

Retracts of maps with retractions have retractions

In fact, we only need the following data to show this:

         i₀   H   r₀
    A ------> X ------> A
    |         |
  f |    i    | g
    ∨         ∨
    B ------> Y.
         i₁

Proof: Note that f is the top map in the triangle

            f
       A ------> B
        \       /
  g ∘ i₀ \     / i₁
          \   /
           ∨ ∨
            Y.

Since both g and i₀ are assumed to have retractions, it follows that g ∘ i₀ has a retraction, and hence that f has a retraction.

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R₀ : A retract-of X) (i₁ : B  Y)
  (i : coherence-square-maps (inclusion-retract R₀) f g i₁)
  (s : retraction g)
  where

  retraction-retract-map-retraction' : retraction f
  retraction-retract-map-retraction' =
    retraction-top-map-triangle
      ( g  inclusion-retract R₀)
      ( i₁)
      ( f)
      ( inv-htpy i)
      ( retraction-comp g (inclusion-retract R₀) s (retraction-retract R₀))

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g)
  where

  retraction-retract-map-retraction : retraction g  retraction f
  retraction-retract-map-retraction =
    retraction-retract-map-retraction' f g
      ( retract-domain-retract-map f g R)
      ( map-codomain-inclusion-retract-map f g R)
      ( coh-inclusion-retract-map f g R)

Equivalences are closed under retracts of maps

We may observe that the higher coherence of a retract of maps is not needed.

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R₀ : A retract-of X) (R₁ : B retract-of Y)
  (i : coherence-square-maps (inclusion-retract R₀) f g (inclusion-retract R₁))
  (r :
    coherence-square-maps
      ( map-retraction-retract R₀)
      ( g)
      ( f)
      ( map-retraction-retract R₁))
  (H : is-equiv g)
  where

  is-equiv-retract-map-is-equiv' : is-equiv f
  pr1 is-equiv-retract-map-is-equiv' =
    section-retract-map-section' f g
      ( map-retraction-retract R₀)
      ( R₁)
      ( r)
      ( section-is-equiv H)
  pr2 is-equiv-retract-map-is-equiv' =
    retraction-retract-map-retraction' f g
      ( R₀)
      ( inclusion-retract R₁)
      ( i)
      ( retraction-is-equiv H)

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g) (H : is-equiv g)
  where

  section-retract-map-is-equiv : section f
  section-retract-map-is-equiv =
    section-retract-map-section f g R (section-is-equiv H)

  retraction-retract-map-is-equiv : retraction f
  retraction-retract-map-is-equiv =
    retraction-retract-map-retraction f g R (retraction-is-equiv H)

  is-equiv-retract-map-is-equiv : is-equiv f
  pr1 is-equiv-retract-map-is-equiv = section-retract-map-is-equiv
  pr2 is-equiv-retract-map-is-equiv = retraction-retract-map-is-equiv

If f is a retract of g, then the fiber inclusions of f are retracts of the fiber inclusions of g

Consider a retract f : A → B of a map g : X → Y, as indicated in the bottom row of squares in the diagram below.

              j                     s
  fiber f b -----> fiber g (i₁ b) -----> fiber f b
     |                 |                    |
     |       i'        |         r'         |
     ∨                 ∨                    ∨
     A ----- i₀ -----> X ------- r₀ ------> A
     |                 |                    |
   f |       i         | g       r          | f
     ∨                 ∨                    ∨
     B --------------> Y -----------------> B
             i₁                  r₁

Then we claim that the fiber inclusion fiber f b → A is a retract of the fiber inclusion fiber g (i' x) → X.

Proof: By functoriality of fibers of maps we obtain a commuting diagram

              j                     s                          ≃
  fiber f b -----> fiber g (i₁ b) -----> fiber f (r₀ (i₀ b)) -----> fiber f b
     |                 |                       |                        |
     |       i'        |           r'          |                        |
     ∨                 ∨                       ∨                        ∨
     A --------------> X --------------------> A ---------------------> A
             i₀                    r₀                       id

which is homotopic to the identity morphism of arrows. We then finish off the proof with the following steps:

  1. We reassociate the composition of morphisms of fibers, which is associated in the above diagram as □ (□ □).
  2. Then we use that hom-arrow-fiber preserves composition.
  3. Next, we apply the action on htpy-hom-arrow of fiber.
  4. Finally, we use that hom-arrow-fiber preserves identity morphisms of arrows.

While each of these steps are very simple to formalize, the operations that are involved take a lot of arguments and therefore the code is somewhat lengthy.

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g) (b : B)
  where

  inclusion-retract-map-inclusion-fiber-retract-map :
    hom-arrow
      ( inclusion-fiber f {b})
      ( inclusion-fiber g {map-codomain-inclusion-retract-map f g R b})
  inclusion-retract-map-inclusion-fiber-retract-map =
    hom-arrow-fiber f g (inclusion-retract-map f g R) b

  hom-retraction-retract-map-inclusion-fiber-retract-map :
    hom-arrow
      ( inclusion-fiber g {map-codomain-inclusion-retract-map f g R b})
      ( inclusion-fiber f {b})
  hom-retraction-retract-map-inclusion-fiber-retract-map =
    comp-hom-arrow
      ( inclusion-fiber g)
      ( inclusion-fiber f)
      ( inclusion-fiber f)
      ( tr-hom-arrow-inclusion-fiber f
        ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
      ( hom-arrow-fiber g f
        ( hom-retraction-retract-map f g R)
        ( map-codomain-inclusion-retract-map f g R b))

  is-retraction-hom-retraction-retract-map-inclusion-fiber-retract-map :
    is-retraction-hom-arrow
      ( inclusion-fiber f)
      ( inclusion-fiber g)
      ( inclusion-retract-map-inclusion-fiber-retract-map)
      ( hom-retraction-retract-map-inclusion-fiber-retract-map)
  is-retraction-hom-retraction-retract-map-inclusion-fiber-retract-map =
    concat-htpy-hom-arrow
      ( inclusion-fiber f)
      ( inclusion-fiber f)
      ( comp-hom-arrow
        ( inclusion-fiber f)
        ( inclusion-fiber g)
        ( inclusion-fiber f)
        ( comp-hom-arrow
          ( inclusion-fiber g)
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( tr-hom-arrow-inclusion-fiber f
            ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
          ( hom-arrow-fiber g f
            ( hom-retraction-retract-map f g R)
            ( map-codomain-inclusion-retract-map f g R b)))
        ( inclusion-retract-map-inclusion-fiber-retract-map))
      ( comp-hom-arrow
        ( inclusion-fiber f)
        ( inclusion-fiber f)
        ( inclusion-fiber f)
        ( tr-hom-arrow-inclusion-fiber f
          ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
        ( comp-hom-arrow
          ( inclusion-fiber f)
          ( inclusion-fiber g)
          ( inclusion-fiber f)
          ( hom-arrow-fiber g f
            ( hom-retraction-retract-map f g R)
            ( map-codomain-inclusion-retract-map f g R b))
          ( inclusion-retract-map-inclusion-fiber-retract-map)))
      ( id-hom-arrow)
      ( inv-assoc-comp-hom-arrow
        ( inclusion-fiber f)
        ( inclusion-fiber g)
        ( inclusion-fiber f)
        ( inclusion-fiber f)
        ( tr-hom-arrow-inclusion-fiber f
          ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
        ( hom-arrow-fiber g f
          ( hom-retraction-retract-map f g R)
          ( map-codomain-inclusion-retract-map f g R b))
        ( inclusion-retract-map-inclusion-fiber-retract-map))
      ( concat-htpy-hom-arrow
        ( inclusion-fiber f)
        ( inclusion-fiber f)
        ( comp-hom-arrow
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( tr-hom-arrow-inclusion-fiber f
            ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
          ( comp-hom-arrow
            ( inclusion-fiber f)
            ( inclusion-fiber g)
            ( inclusion-fiber f)
            ( hom-arrow-fiber g f
              ( hom-retraction-retract-map f g R)
              ( map-codomain-inclusion-retract-map f g R b))
            ( inclusion-retract-map-inclusion-fiber-retract-map)))
        ( comp-hom-arrow
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( tr-hom-arrow-inclusion-fiber f
            ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
          ( hom-arrow-fiber f f
            ( comp-hom-arrow f g f
              ( hom-retraction-retract-map f g R)
              ( inclusion-retract-map f g R))
            ( b)))
        ( id-hom-arrow)
        ( left-whisker-comp-hom-arrow
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( tr-hom-arrow-inclusion-fiber f
            ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
          ( comp-hom-arrow
            ( inclusion-fiber f)
            ( inclusion-fiber g)
            ( inclusion-fiber f)
            ( hom-arrow-fiber g f
              ( hom-retraction-retract-map f g R)
              ( map-codomain-inclusion-retract-map f g R b))
            ( hom-arrow-fiber f g (inclusion-retract-map f g R) b))
          ( hom-arrow-fiber f f
            ( comp-hom-arrow f g f
              ( hom-retraction-retract-map f g R)
              ( inclusion-retract-map f g R))
            ( b))
          ( inv-htpy-hom-arrow
            ( inclusion-fiber f)
            ( inclusion-fiber f)
            ( hom-arrow-fiber f f
              ( comp-hom-arrow f g f
                ( hom-retraction-retract-map f g R)
                ( inclusion-retract-map f g R))
              ( b))
            ( comp-hom-arrow
              ( inclusion-fiber f)
              ( inclusion-fiber g)
              ( inclusion-fiber f)
              ( hom-arrow-fiber g f
                ( hom-retraction-retract-map f g R)
                ( map-codomain-inclusion-retract-map f g R b))
              ( hom-arrow-fiber f g (inclusion-retract-map f g R) b))
            ( preserves-comp-hom-arrow-fiber f g f
              ( hom-retraction-retract-map f g R)
              ( inclusion-retract-map f g R)
              ( b))))
        ( concat-htpy-hom-arrow
          ( inclusion-fiber f)
          ( inclusion-fiber f)
          ( comp-hom-arrow
            ( inclusion-fiber f)
            ( inclusion-fiber f)
            ( inclusion-fiber f)
            ( tr-hom-arrow-inclusion-fiber f
              ( is-retraction-map-codomain-hom-retraction-retract-map f g R b))
            ( hom-arrow-fiber f f
              ( comp-hom-arrow f g f
                ( hom-retraction-retract-map f g R)
                ( inclusion-retract-map f g R))
              ( b)))
          ( hom-arrow-fiber f f id-hom-arrow b)
          ( id-hom-arrow)
          ( htpy-hom-arrow-fiber f f
            ( comp-hom-arrow f g f
              ( hom-retraction-retract-map f g R)
              ( inclusion-retract-map f g R))
            ( id-hom-arrow)
            ( is-retraction-hom-retraction-retract-map f g R)
            ( b))
          ( preserves-id-hom-arrow-fiber f b)))

  retract-map-inclusion-fiber-retract-map :
    retract-map
      ( inclusion-fiber g {map-codomain-inclusion-retract-map f g R b})
      ( inclusion-fiber f {b})
  pr1 retract-map-inclusion-fiber-retract-map =
    inclusion-retract-map-inclusion-fiber-retract-map
  pr1 (pr2 retract-map-inclusion-fiber-retract-map) =
    hom-retraction-retract-map-inclusion-fiber-retract-map
  pr2 (pr2 retract-map-inclusion-fiber-retract-map) =
    is-retraction-hom-retraction-retract-map-inclusion-fiber-retract-map

If f is a retract of g, then the fibers of f are retracts of the fibers of g

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g) (b : B)
  where

  retract-fiber-retract-map :
    retract
      ( fiber g (map-codomain-inclusion-retract-map f g R b))
      ( fiber f b)
  retract-fiber-retract-map =
    retract-domain-retract-map
      ( inclusion-fiber f)
      ( inclusion-fiber g)
      ( retract-map-inclusion-fiber-retract-map f g R b)

If f is a retract of g, then - ∘ f is a retract of - ∘ g

module _
  {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g) (S : UU l5)
  where

  inclusion-precomp-retract-map : hom-arrow (precomp f S) (precomp g S)
  inclusion-precomp-retract-map =
    precomp-hom-arrow g f (hom-retraction-retract-map f g R) S

  hom-retraction-precomp-retract-map : hom-arrow (precomp g S) (precomp f S)
  hom-retraction-precomp-retract-map =
    precomp-hom-arrow f g (inclusion-retract-map f g R) S

  is-retraction-map-domain-precomp-retract-map :
    is-retraction
      ( map-domain-hom-arrow
        ( precomp f S)
        ( precomp g S)
        ( inclusion-precomp-retract-map))
      ( map-domain-hom-arrow
        ( precomp g S)
        ( precomp f S)
        ( hom-retraction-precomp-retract-map))
  is-retraction-map-domain-precomp-retract-map =
    htpy-precomp (is-retraction-map-codomain-hom-retraction-retract-map f g R) S

  is-retraction-map-codomain-precomp-retract-map :
    is-retraction
      ( map-codomain-hom-arrow
        ( precomp f S)
        ( precomp g S)
        ( inclusion-precomp-retract-map))
      ( map-codomain-hom-arrow
        ( precomp g S)
        ( precomp f S)
        ( hom-retraction-precomp-retract-map))
  is-retraction-map-codomain-precomp-retract-map =
    htpy-precomp (is-retraction-map-domain-hom-retraction-retract-map f g R) S

  coh-retract-precomp-retract-map :
    coherence-retract-map
      ( precomp f S)
      ( precomp g S)
      ( inclusion-precomp-retract-map)
      ( hom-retraction-precomp-retract-map)
      ( is-retraction-map-domain-precomp-retract-map)
      ( is-retraction-map-codomain-precomp-retract-map)
  coh-retract-precomp-retract-map =
    ( precomp-vertical-coherence-prism-inv-triangles-maps
      ( id)
      ( map-domain-hom-retraction-retract-map f g R)
      ( map-domain-inclusion-retract-map f g R)
      ( id)
      ( map-codomain-hom-retraction-retract-map f g R)
      ( map-codomain-inclusion-retract-map f g R)
      ( f)
      ( g)
      ( f)
      ( is-retraction-map-domain-hom-retraction-retract-map f g R)
      ( refl-htpy)
      ( coh-hom-retraction-retract-map f g R)
      ( coh-inclusion-retract-map f g R)
      ( is-retraction-map-codomain-hom-retraction-retract-map f g R)
      ( coh-retract-map f g R)
      ( S)) ∙h
    ( ap-concat-htpy
      ( is-retraction-map-codomain-precomp-retract-map ·r precomp f S)
      ( λ x  ap inv (eq-htpy-refl-htpy (precomp f S x))))

  is-retraction-hom-retraction-precomp-retract-map :
    is-retraction-hom-arrow
      ( precomp f S)
      ( precomp g S)
      ( inclusion-precomp-retract-map)
      ( hom-retraction-precomp-retract-map)
  pr1 is-retraction-hom-retraction-precomp-retract-map =
    is-retraction-map-domain-precomp-retract-map
  pr1 (pr2 is-retraction-hom-retraction-precomp-retract-map) =
    is-retraction-map-codomain-precomp-retract-map
  pr2 (pr2 is-retraction-hom-retraction-precomp-retract-map) =
    coh-retract-precomp-retract-map

  retraction-precomp-retract-map :
    retraction-hom-arrow
      ( precomp f S)
      ( precomp g S)
      ( inclusion-precomp-retract-map)
  pr1 retraction-precomp-retract-map =
    hom-retraction-precomp-retract-map
  pr2 retraction-precomp-retract-map =
    is-retraction-hom-retraction-precomp-retract-map

  retract-map-precomp-retract-map : (precomp f S) retract-of-map (precomp g S)
  pr1 retract-map-precomp-retract-map = inclusion-precomp-retract-map
  pr2 retract-map-precomp-retract-map = retraction-precomp-retract-map

If f is a retract of g, then f ∘ - is a retract of g ∘ -

module _
  {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4}
  (f : A  B) (g : X  Y) (R : f retract-of-map g) (S : UU l5)
  where

  inclusion-postcomp-retract-map : hom-arrow (postcomp S f) (postcomp S g)
  inclusion-postcomp-retract-map =
    postcomp-hom-arrow f g (inclusion-retract-map f g R) S

  hom-retraction-postcomp-retract-map : hom-arrow (postcomp S g) (postcomp S f)
  hom-retraction-postcomp-retract-map =
    postcomp-hom-arrow g f (hom-retraction-retract-map f g R) S

  is-retraction-map-domain-postcomp-retract-map :
    is-retraction
      ( map-domain-hom-arrow
        ( postcomp S f)
        ( postcomp S g)
        ( inclusion-postcomp-retract-map))
      ( map-domain-hom-arrow
        ( postcomp S g)
        ( postcomp S f)
        ( hom-retraction-postcomp-retract-map))
  is-retraction-map-domain-postcomp-retract-map =
    htpy-postcomp S (is-retraction-map-domain-hom-retraction-retract-map f g R)

  is-retraction-map-codomain-postcomp-retract-map :
    is-retraction
      ( map-codomain-hom-arrow
        ( postcomp S f)
        ( postcomp S g)
        ( inclusion-postcomp-retract-map))
      ( map-codomain-hom-arrow
        ( postcomp S g)
        ( postcomp S f)
        ( hom-retraction-postcomp-retract-map))
  is-retraction-map-codomain-postcomp-retract-map =
    htpy-postcomp S
      ( is-retraction-map-codomain-hom-retraction-retract-map f g R)

  coh-retract-postcomp-retract-map :
    coherence-retract-map
      ( postcomp S f)
      ( postcomp S g)
      ( inclusion-postcomp-retract-map)
      ( hom-retraction-postcomp-retract-map)
      ( is-retraction-map-domain-postcomp-retract-map)
      ( is-retraction-map-codomain-postcomp-retract-map)
  coh-retract-postcomp-retract-map =
    ( postcomp-vertical-coherence-prism-inv-triangles-maps
      ( id)
      ( map-domain-hom-retraction-retract-map f g R)
      ( map-domain-inclusion-retract-map f g R)
      ( id)
      ( map-codomain-hom-retraction-retract-map f g R)
      ( map-codomain-inclusion-retract-map f g R)
      ( f)
      ( g)
      ( f)
      ( is-retraction-map-domain-hom-retraction-retract-map f g R)
      ( refl-htpy)
      ( coh-hom-retraction-retract-map f g R)
      ( coh-inclusion-retract-map f g R)
      ( is-retraction-map-codomain-hom-retraction-retract-map f g R)
      ( coh-retract-map f g R)
      ( S)) ∙h
    ( ap-concat-htpy
      ( is-retraction-map-codomain-postcomp-retract-map ·r postcomp S f)
      ( eq-htpy-refl-htpy  postcomp S f))

  is-retraction-hom-retraction-postcomp-retract-map :
    is-retraction-hom-arrow
      ( postcomp S f)
      ( postcomp S g)
      ( inclusion-postcomp-retract-map)
      ( hom-retraction-postcomp-retract-map)
  pr1 is-retraction-hom-retraction-postcomp-retract-map =
    is-retraction-map-domain-postcomp-retract-map
  pr1 (pr2 is-retraction-hom-retraction-postcomp-retract-map) =
    is-retraction-map-codomain-postcomp-retract-map
  pr2 (pr2 is-retraction-hom-retraction-postcomp-retract-map) =
    coh-retract-postcomp-retract-map

  retraction-postcomp-retract-map :
    retraction-hom-arrow
      ( postcomp S f)
      ( postcomp S g)
      ( inclusion-postcomp-retract-map)
  pr1 retraction-postcomp-retract-map =
    hom-retraction-postcomp-retract-map
  pr2 retraction-postcomp-retract-map =
    is-retraction-hom-retraction-postcomp-retract-map

  retract-map-postcomp-retract-map :
    (postcomp S f) retract-of-map (postcomp S g)
  pr1 retract-map-postcomp-retract-map = inclusion-postcomp-retract-map
  pr2 retract-map-postcomp-retract-map = retraction-postcomp-retract-map

If A is a retract of B and S is a retract of T then diagonal-exponential A S is a retract of diagonal-exponential B T

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {S : UU l3} {T : UU l4}
  (R : A retract-of B) (Q : S retract-of T)
  where

  inclusion-diagonal-exponential-retract :
    hom-arrow (diagonal-exponential A S) (diagonal-exponential B T)
  inclusion-diagonal-exponential-retract =
    ( inclusion-retract R ,
      precomp (map-retraction-retract Q) B  postcomp S (inclusion-retract R) ,
      refl-htpy)

  hom-retraction-diagonal-exponential-retract :
    hom-arrow (diagonal-exponential B T) (diagonal-exponential A S)
  hom-retraction-diagonal-exponential-retract =
    ( map-retraction-retract R ,
      postcomp S (map-retraction-retract R)  precomp (inclusion-retract Q) B ,
      refl-htpy)

  coh-retract-map-diagonal-exponential-retract :
    coherence-retract-map
      ( diagonal-exponential A S)
      ( diagonal-exponential B T)
      ( inclusion-diagonal-exponential-retract)
      ( hom-retraction-diagonal-exponential-retract)
      ( is-retraction-map-retraction-retract R)
      ( horizontal-concat-htpy
        ( htpy-postcomp S (is-retraction-map-retraction-retract R))
        ( htpy-precomp (is-retraction-map-retraction-retract Q) A))
  coh-retract-map-diagonal-exponential-retract x =
    ( compute-eq-htpy-ap-diagonal-exponential S
      ( map-retraction-retract R (inclusion-retract R x))
      ( x)
      ( is-retraction-map-retraction-retract R x)) 
    ( ap
      ( λ p 
        ( ap  f a  map-retraction-retract R (inclusion-retract R (f a))) p) 
        ( eq-htpy  _  is-retraction-map-retraction-retract R x)))
      ( inv
        ( ( ap
            ( eq-htpy)
            ( eq-htpy (ap-const x ·r is-retraction-map-retraction-retract Q))) 
          ( eq-htpy-refl-htpy (diagonal-exponential A S x))))) 
      ( inv right-unit)

  is-retraction-hom-retraction-diagonal-exponential-retract :
    is-retraction-hom-arrow
      ( diagonal-exponential A S)
      ( diagonal-exponential B T)
      ( inclusion-diagonal-exponential-retract)
      ( hom-retraction-diagonal-exponential-retract)
  is-retraction-hom-retraction-diagonal-exponential-retract =
    ( ( is-retraction-map-retraction-retract R) ,
      ( horizontal-concat-htpy
        ( htpy-postcomp S (is-retraction-map-retraction-retract R))
        ( htpy-precomp (is-retraction-map-retraction-retract Q) A)) ,
      ( coh-retract-map-diagonal-exponential-retract))

  retract-map-diagonal-exponential-retract :
    (diagonal-exponential A S) retract-of-map (diagonal-exponential B T)
  retract-map-diagonal-exponential-retract =
    ( inclusion-diagonal-exponential-retract ,
      hom-retraction-diagonal-exponential-retract ,
      is-retraction-hom-retraction-diagonal-exponential-retract)

References

[UF13]
The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.

A wikidata identifier was not available for this concept.

Recent changes