Descent property of sequential colimits
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.descent-property-sequential-colimits where
Imports
open import elementary-number-theory.natural-numbers open import foundation.binary-homotopies open import foundation.commuting-triangles-of-maps open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.univalence open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-sequential-diagrams open import synthetic-homotopy-theory.descent-data-sequential-colimits open import synthetic-homotopy-theory.sequential-diagrams open import synthetic-homotopy-theory.universal-property-sequential-colimits
Idea
The descent property¶ of sequential colimits characterizes type families over sequential colimits as descent data over the base sequential diagram.
Given a sequential diagram (A, a)
and a
cocone with
vertex X
, there is a commuting triangle
cocone-map
(X → 𝒰) ---------> cocone A 𝒰
\ /
\ /
\ /
∨ ∨
descent-data A .
From univalence it follows that the right map
is an equivalence. If X
is a colimit of A
, then we have that the top map is
an equivalence, which imples that the left map is an equivalence.
Theorem
module _ {l1 : Level} {A : sequential-diagram l1} where equiv-descent-data-cocone-sequential-diagram : {l2 : Level} → cocone-sequential-diagram A (UU l2) ≃ descent-data-sequential-colimit A l2 equiv-descent-data-cocone-sequential-diagram = equiv-tot ( λ B → equiv-Π-equiv-family ( λ n → equiv-Π-equiv-family (λ a → equiv-univalence))) descent-data-cocone-sequential-diagram : {l2 : Level} → cocone-sequential-diagram A (UU l2) → descent-data-sequential-colimit A l2 descent-data-cocone-sequential-diagram = map-equiv equiv-descent-data-cocone-sequential-diagram is-equiv-descent-data-cocone-sequential-diagram : {l2 : Level} → is-equiv (descent-data-cocone-sequential-diagram {l2}) is-equiv-descent-data-cocone-sequential-diagram = is-equiv-map-equiv equiv-descent-data-cocone-sequential-diagram module _ {l1 l2 : Level} {A : sequential-diagram l1} {X : UU l2} (c : cocone-sequential-diagram A X) where triangle-descent-data-family-cocone-sequential-diagram : {l3 : Level} → coherence-triangle-maps ( descent-data-family-cocone-sequential-diagram c) ( descent-data-cocone-sequential-diagram) ( cocone-map-sequential-diagram c {Y = UU l3}) triangle-descent-data-family-cocone-sequential-diagram P = eq-pair-eq-fiber ( eq-binary-htpy _ _ ( λ n a → inv ( compute-equiv-eq-ap ( coherence-cocone-sequential-diagram c n a)))) module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} {X : UU l2} {c : cocone-sequential-diagram A X} (up-c : universal-property-sequential-colimit c) where is-equiv-descent-data-family-cocone-sequential-diagram : is-equiv (descent-data-family-cocone-sequential-diagram c {l3}) is-equiv-descent-data-family-cocone-sequential-diagram = is-equiv-left-map-triangle ( descent-data-family-cocone-sequential-diagram c) ( descent-data-cocone-sequential-diagram) ( cocone-map-sequential-diagram c) ( triangle-descent-data-family-cocone-sequential-diagram c) ( up-c (UU l3)) ( is-equiv-descent-data-cocone-sequential-diagram) equiv-descent-data-family-cocone-sequential-diagram : (X → UU l3) ≃ descent-data-sequential-colimit A l3 pr1 equiv-descent-data-family-cocone-sequential-diagram = descent-data-family-cocone-sequential-diagram c pr2 equiv-descent-data-family-cocone-sequential-diagram = is-equiv-descent-data-family-cocone-sequential-diagram family-cocone-descent-data-sequential-colimit : descent-data-sequential-colimit A l3 → (X → UU l3) family-cocone-descent-data-sequential-colimit = map-inv-equiv ( equiv-descent-data-family-cocone-sequential-diagram)
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).