Derivatives of real functions on proper closed intervals of ℝ
Content created by Louis Wasserman.
Created on 2025-11-21.
Last modified on 2025-11-21.
{-# OPTIONS --lossy-unification #-} module analysis.derivatives-of-real-functions-on-proper-closed-intervals where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.minimum-positive-rational-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import group-theory.abelian-groups open import lists.sequences open import logic.functoriality-existential-quantification open import metric-spaces.metric-spaces open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.accumulation-points-subsets-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.apartness-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.limits-sequences-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.multiplicative-inverses-nonzero-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.nonzero-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
Given a function f from a
proper closed interval
[a, b] of real numbers to the real
numbers, g is a
derivative¶
of f if there exists a modulus
function μ such that for ε : ℚ⁺ and any x and y in [a, b] within a
μ(ε)-neighborhood of each
other, we have
Definition
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (g : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) where is-modulus-of-derivative-prop-real-function-proper-closed-interval-ℝ : (ℚ⁺ → ℚ⁺) → Prop (lsuc l1 ⊔ l2) is-modulus-of-derivative-prop-real-function-proper-closed-interval-ℝ μ = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( type-proper-closed-interval-ℝ l1 [a,b]) ( λ (x , x∈[a,b]) → Π-Prop ( type-proper-closed-interval-ℝ l1 [a,b]) ( λ (y , y∈[a,b]) → hom-Prop ( neighborhood-prop-ℝ l1 (μ ε) x y) ( leq-prop-ℝ ( dist-ℝ ( f (y , y∈[a,b]) -ℝ f (x , x∈[a,b])) ( g (x , x∈[a,b]) *ℝ (y -ℝ x))) ( real-ℚ⁺ ε *ℝ dist-ℝ x y))))) is-modulus-of-derivative-real-function-proper-closed-interval-ℝ : (ℚ⁺ → ℚ⁺) → UU (lsuc l1 ⊔ l2) is-modulus-of-derivative-real-function-proper-closed-interval-ℝ = is-in-subtype ( is-modulus-of-derivative-prop-real-function-proper-closed-interval-ℝ) is-derivative-prop-real-function-proper-closed-interval-ℝ : Prop (lsuc l1 ⊔ l2) is-derivative-prop-real-function-proper-closed-interval-ℝ = is-inhabited-subtype-Prop ( is-modulus-of-derivative-prop-real-function-proper-closed-interval-ℝ) is-derivative-real-function-proper-closed-interval-ℝ : UU (lsuc l1 ⊔ l2) is-derivative-real-function-proper-closed-interval-ℝ = type-Prop is-derivative-prop-real-function-proper-closed-interval-ℝ
Properties
Proving the derivative of a function from a modulus
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (g : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) where is-derivative-modulus-of-real-function-proper-closed-interval-ℝ : ( (ε : ℚ⁺) → Σ ( ℚ⁺) ( λ δ → (x y : type-proper-closed-interval-ℝ l1 [a,b]) → neighborhood-ℝ l1 δ (pr1 x) (pr1 y) → leq-ℝ ( dist-ℝ (f y -ℝ f x) (g x *ℝ (pr1 y -ℝ pr1 x))) ( real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y)))) → is-derivative-real-function-proper-closed-interval-ℝ [a,b] f g is-derivative-modulus-of-real-function-proper-closed-interval-ℝ μ = intro-exists (pr1 ∘ μ) (pr2 ∘ μ)
If g is a derivative of f, and aₙ is a sequence accumulating to x, and the limit exists, then g x is equal to the limit of (f aₙ - f x)/(aₙ - x) as n → ∞
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (x : type-proper-closed-interval-ℝ l1 [a,b]) (y : sequence-accumulating-to-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( pr1 x)) where sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ : sequence (ℝ (l1 ⊔ l2)) sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ n = (f (pr1 y n) -ℝ f x) *ℝ real-inv-nonzero-ℝ ( nonzero-diff-apart-ℝ ( real-sequence-accumulating-to-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( pr1 x) ( y) ( n)) ( pr1 x) ( apart-sequence-accumulating-to-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( pr1 x) ( y) ( n))) module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (g : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) (x : type-proper-closed-interval-ℝ l1 [a,b]) (y : sequence-accumulating-to-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( pr1 x)) where abstract is-limit-sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ : is-derivative-real-function-proper-closed-interval-ℝ [a,b] f g → is-limit-sequence-ℝ ( sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ ( [a,b]) ( f) ( x) ( y)) ( g x) is-limit-sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ H = let open do-syntax-trunc-Prop ( is-limit-prop-sequence-ℝ ( sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ ( [a,b]) ( f) ( x) ( y)) ( g x)) open inequality-reasoning-Large-Poset ℝ-Large-Poset seq-deriv = sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ ( [a,b]) ( f) ( x) ( y) nonzero-diff n = nonzero-diff-apart-ℝ ( real-sequence-accumulating-to-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( pr1 x) ( y) ( n)) ( pr1 x) ( apart-sequence-accumulating-to-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( pr1 x) ( y) ( n)) real-nonzero-diff n = real-nonzero-ℝ (nonzero-diff n) in do (μ , is-mod-μ) ← is-limit-sequence-accumulating-to-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( pr1 x) ( y) (ν , is-mod-ν) ← H intro-exists ( μ ∘ ν) ( λ ε n N≤n → neighborhood-dist-ℝ ( ε) ( seq-deriv n) ( g x) ( chain-of-inequalities dist-ℝ (seq-deriv n) (g x) ≤ dist-ℝ (seq-deriv n) (g x *ℝ one-ℝ) by leq-eq-ℝ (ap-dist-ℝ refl (inv (right-unit-law-mul-ℝ (g x)))) ≤ dist-ℝ ( (f (pr1 y n) -ℝ f x) *ℝ real-inv-nonzero-ℝ (nonzero-diff n)) ( g x *ℝ ( real-nonzero-diff n *ℝ real-inv-nonzero-ℝ (nonzero-diff n))) by leq-sim-ℝ ( preserves-dist-right-sim-ℝ ( preserves-sim-left-mul-ℝ _ _ _ ( symmetric-sim-ℝ ( right-inverse-law-mul-nonzero-ℝ ( nonzero-diff n))))) ≤ dist-ℝ ( (f (pr1 y n) -ℝ f x) *ℝ real-inv-nonzero-ℝ (nonzero-diff n)) ( (g x *ℝ real-nonzero-diff n) *ℝ real-inv-nonzero-ℝ (nonzero-diff n)) by leq-eq-ℝ (ap-dist-ℝ refl (inv (associative-mul-ℝ _ _ _))) ≤ dist-ℝ ( f (pr1 y n) -ℝ f x) ( g x *ℝ (pr1 (pr1 y n) -ℝ pr1 x)) *ℝ abs-ℝ (real-inv-nonzero-ℝ (nonzero-diff n)) by leq-eq-ℝ (inv (right-distributive-abs-mul-dist-ℝ _ _ _)) ≤ ( real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 (pr1 y n))) *ℝ ( abs-ℝ (real-inv-nonzero-ℝ (nonzero-diff n))) by preserves-leq-right-mul-ℝ⁰⁺ ( nonnegative-abs-ℝ _) ( is-mod-ν ( ε) ( x) ( pr1 y n) ( is-symmetric-neighborhood-ℝ ( ν ε) ( pr1 (pr1 y n)) ( pr1 x) ( is-mod-μ (ν ε) n N≤n))) ≤ ( real-ℚ⁺ ε) *ℝ ( ( abs-ℝ (pr1 x -ℝ pr1 (pr1 y n))) *ℝ ( abs-ℝ (real-inv-nonzero-ℝ (nonzero-diff n)))) by leq-eq-ℝ (associative-mul-ℝ _ _ _) ≤ ( real-ℚ⁺ ε) *ℝ ( ( abs-ℝ (pr1 (pr1 y n) -ℝ pr1 x)) *ℝ ( abs-ℝ (real-inv-nonzero-ℝ (nonzero-diff n)))) by leq-eq-ℝ ( ap-mul-ℝ refl (ap-mul-ℝ (commutative-dist-ℝ _ _) refl)) ≤ ( real-ℚ⁺ ε) *ℝ ( abs-ℝ ( ( pr1 (pr1 y n) -ℝ pr1 x) *ℝ ( real-inv-nonzero-ℝ (nonzero-diff n)))) by leq-eq-ℝ (ap-mul-ℝ refl (inv (abs-mul-ℝ _ _))) ≤ real-ℚ⁺ ε *ℝ abs-ℝ one-ℝ by leq-sim-ℝ ( preserves-sim-left-mul-ℝ _ _ _ ( preserves-sim-abs-ℝ ( right-inverse-law-mul-nonzero-ℝ (nonzero-diff n)))) ≤ real-ℚ⁺ ε *ℝ one-ℝ by leq-eq-ℝ (ap-mul-ℝ refl (abs-real-ℝ⁰⁺ one-ℝ⁰⁺)) ≤ real-ℚ⁺ ε by leq-eq-ℝ (right-unit-law-mul-ℝ _)))
Any two derivatives of a function are homotopic
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (g : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) (h : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) where abstract htpy-is-derivative-real-function-proper-closed-interval-ℝ : is-derivative-real-function-proper-closed-interval-ℝ [a,b] f g → is-derivative-real-function-proper-closed-interval-ℝ [a,b] f h → g ~ h htpy-is-derivative-real-function-proper-closed-interval-ℝ G H x'@(x , x∈[a,b]) = let open do-syntax-trunc-Prop (Id-Prop (ℝ-Set (l1 ⊔ l2)) (g x') (h x')) in do y ← is-sequential-accumulation-point-is-accumulation-point-subset-ℝ ( subtype-proper-closed-interval-ℝ l1 [a,b]) ( x) ( is-accumulation-point-is-in-proper-closed-interval-ℝ ( [a,b]) ( x) ( x∈[a,b])) eq-is-limit-sequence-ℝ ( sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ ( [a,b]) ( f) ( x') ( y)) ( g x') ( h x') ( is-limit-sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ ( [a,b]) ( f) ( g) ( x') ( y) ( G)) ( is-limit-sequence-derivative-accumulating-to-point-proper-closed-interval-ℝ ( [a,b]) ( f) ( h) ( x') ( y) ( H))
Being differentiable is a proposition
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) where is-differentiable-real-function-proper-closed-interval-ℝ : UU (lsuc l1 ⊔ lsuc l2) is-differentiable-real-function-proper-closed-interval-ℝ = Σ ( type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) ( is-derivative-real-function-proper-closed-interval-ℝ [a,b] f) abstract eq-is-derivative-real-function-proper-closed-interval-ℝ : (g h : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) → is-derivative-real-function-proper-closed-interval-ℝ [a,b] f g → is-derivative-real-function-proper-closed-interval-ℝ [a,b] f h → g = h eq-is-derivative-real-function-proper-closed-interval-ℝ g h G H = eq-htpy ( htpy-is-derivative-real-function-proper-closed-interval-ℝ ( [a,b]) ( f) ( g) ( h) ( G) ( H)) all-elements-equal-is-differentiable-real-function-proper-closed-interval-ℝ : all-elements-equal ( is-differentiable-real-function-proper-closed-interval-ℝ) all-elements-equal-is-differentiable-real-function-proper-closed-interval-ℝ (g , G) (h , H) = eq-type-subtype ( is-derivative-prop-real-function-proper-closed-interval-ℝ [a,b] f) ( eq-is-derivative-real-function-proper-closed-interval-ℝ g h G H) is-prop-is-differentiable-real-function-proper-closed-interval-ℝ : is-prop is-differentiable-real-function-proper-closed-interval-ℝ is-prop-is-differentiable-real-function-proper-closed-interval-ℝ = is-prop-all-elements-equal all-elements-equal-is-differentiable-real-function-proper-closed-interval-ℝ is-differentiable-prop-real-function-proper-closed-interval-ℝ : Prop (lsuc l1 ⊔ lsuc l2) is-differentiable-prop-real-function-proper-closed-interval-ℝ = ( is-differentiable-real-function-proper-closed-interval-ℝ , is-prop-is-differentiable-real-function-proper-closed-interval-ℝ)
The derivative of f + g is f' + g'
module _ {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (g : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l3) (f' : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) (g' : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l3)) (is-derivative-f-f' : is-derivative-real-function-proper-closed-interval-ℝ [a,b] f f') (is-derivative-g-g' : is-derivative-real-function-proper-closed-interval-ℝ [a,b] g g') where abstract is-derivative-add-real-function-proper-closed-interval-ℝ : is-derivative-real-function-proper-closed-interval-ℝ ( [a,b]) ( λ x → f x +ℝ g x) ( λ x → f' x +ℝ g' x) is-derivative-add-real-function-proper-closed-interval-ℝ = let open do-syntax-trunc-Prop ( is-derivative-prop-real-function-proper-closed-interval-ℝ ( [a,b]) ( λ x → f x +ℝ g x) ( λ x → f' x +ℝ g' x)) open inequality-reasoning-Large-Poset ℝ-Large-Poset in do (μ , is-mod-μ) ← is-derivative-f-f' (ν , is-mod-ν) ← is-derivative-g-g' is-derivative-modulus-of-real-function-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → let (ε₁ , ε₂ , ε₁+ε₂=ε) = split-ℚ⁺ ε in ( min-ℚ⁺ (μ ε₁) (ν ε₂) , λ x y Nxy → chain-of-inequalities dist-ℝ ( (f y +ℝ g y) -ℝ (f x +ℝ g x)) ( (f' x +ℝ g' x) *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ ( (f y -ℝ f x) +ℝ (g y -ℝ g x)) ( f' x *ℝ (pr1 y -ℝ pr1 x) +ℝ g' x *ℝ (pr1 y -ℝ pr1 x)) by leq-eq-ℝ ( ap-dist-ℝ ( interchange-law-diff-add-ℝ _ _ _ _) ( right-distributive-mul-add-ℝ _ _ _)) ≤ abs-ℝ ( ( (f y -ℝ f x) -ℝ f' x *ℝ (pr1 y -ℝ pr1 x)) +ℝ ( (g y -ℝ g x) -ℝ g' x *ℝ (pr1 y -ℝ pr1 x))) by leq-eq-ℝ (ap abs-ℝ (interchange-law-diff-add-ℝ _ _ _ _)) ≤ ( dist-ℝ (f y -ℝ f x) (f' x *ℝ (pr1 y -ℝ pr1 x))) +ℝ ( dist-ℝ (g y -ℝ g x) (g' x *ℝ (pr1 y -ℝ pr1 x))) by triangle-inequality-abs-ℝ _ _ ≤ ( real-ℚ⁺ ε₁ *ℝ dist-ℝ (pr1 x) (pr1 y)) +ℝ ( real-ℚ⁺ ε₂ *ℝ dist-ℝ (pr1 x) (pr1 y)) by preserves-leq-add-ℝ ( is-mod-μ ( ε₁) ( x) ( y) ( weakly-monotonic-neighborhood-Metric-Space ( metric-space-ℝ l1) ( pr1 x) ( pr1 y) ( min-ℚ⁺ (μ ε₁) (ν ε₂)) ( μ ε₁) ( leq-left-min-ℚ⁺ _ _) ( Nxy))) ( is-mod-ν ( ε₂) ( x) ( y) ( weakly-monotonic-neighborhood-Metric-Space ( metric-space-ℝ l1) ( pr1 x) ( pr1 y) ( min-ℚ⁺ (μ ε₁) (ν ε₂)) ( ν ε₂) ( leq-right-min-ℚ⁺ _ _) ( Nxy))) ≤ (real-ℚ⁺ ε₁ +ℝ real-ℚ⁺ ε₂) *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ (inv (right-distributive-mul-add-ℝ _ _ _)) ≤ real-ℚ⁺ (ε₁ +ℚ⁺ ε₂) *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ (ap-mul-ℝ (add-real-ℚ _ _) refl) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ (ap-mul-ℝ (ap real-ℚ⁺ ε₁+ε₂=ε) refl)))
The derivative of cf is cf'
module _ {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (f : type-proper-closed-interval-ℝ l1 [a,b] → ℝ l2) (f' : type-proper-closed-interval-ℝ l1 [a,b] → ℝ (l1 ⊔ l2)) (is-derivative-f-f' : is-derivative-real-function-proper-closed-interval-ℝ [a,b] f f') (c : ℝ l3) where abstract is-derivative-scalar-mul-real-function-proper-closed-interval-ℝ : is-derivative-real-function-proper-closed-interval-ℝ ( [a,b]) ( λ x → c *ℝ f x) ( λ x → c *ℝ f' x) is-derivative-scalar-mul-real-function-proper-closed-interval-ℝ = let open do-syntax-trunc-Prop ( is-derivative-prop-real-function-proper-closed-interval-ℝ ( [a,b]) ( λ x → c *ℝ f x) ( λ x → c *ℝ f' x)) open inequality-reasoning-Large-Poset ℝ-Large-Poset in do (μ , is-mod-μ) ← is-derivative-f-f' (q , |c|<q) ← exists-ℚ⁺-le-ℝ⁰⁺ (nonnegative-abs-ℝ c) is-derivative-modulus-of-real-function-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → ( μ (ε *ℚ⁺ inv-ℚ⁺ q) , λ x y N⟨ε/q⟩xy → chain-of-inequalities dist-ℝ (c *ℝ f y -ℝ c *ℝ f x) (c *ℝ f' x *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ (c *ℝ (f y -ℝ f x)) (c *ℝ (f' x *ℝ (pr1 y -ℝ pr1 x))) by leq-eq-ℝ ( ap-dist-ℝ ( inv (left-distributive-mul-diff-ℝ _ _ _)) ( associative-mul-ℝ _ _ _)) ≤ abs-ℝ c *ℝ dist-ℝ (f y -ℝ f x) (f' x *ℝ (pr1 y -ℝ pr1 x)) by leq-eq-ℝ (inv (left-distributive-abs-mul-dist-ℝ _ _ _)) ≤ ( real-ℚ⁺ q) *ℝ ( real-ℚ⁺ (ε *ℚ⁺ inv-ℚ⁺ q) *ℝ dist-ℝ (pr1 x) (pr1 y)) by preserves-leq-mul-ℝ⁰⁺ ( nonnegative-abs-ℝ c) ( nonnegative-real-ℚ⁺ q) ( nonnegative-dist-ℝ _ _) ( nonnegative-real-ℚ⁺ (ε *ℚ⁺ inv-ℚ⁺ q) *ℝ⁰⁺ nonnegative-dist-ℝ _ _) ( leq-le-ℝ |c|<q) ( is-mod-μ ( ε *ℚ⁺ inv-ℚ⁺ q) ( x) ( y) ( N⟨ε/q⟩xy)) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by leq-eq-ℝ ( ( inv (associative-mul-ℝ _ _ _)) ∙ ( ap-mul-ℝ ( ( mul-real-ℚ _ _) ∙ ( ap ( real-ℚ⁺) ( is-identity-right-conjugation-Ab ( abelian-group-mul-ℚ⁺) ( q) ( ε)))) ( refl)))))
The derivative of a constant function is 0
module _ {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l1) (c : ℝ l2) where abstract derivative-constant-real-function-proper-closed-interval-ℝ : is-derivative-real-function-proper-closed-interval-ℝ ( [a,b]) ( λ _ → c) ( λ _ → raise-ℝ (l1 ⊔ l2) zero-ℝ) derivative-constant-real-function-proper-closed-interval-ℝ = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in is-derivative-modulus-of-real-function-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → ( one-ℚ⁺ , λ x y _ → chain-of-inequalities dist-ℝ (c -ℝ c) (raise-ℝ (l1 ⊔ l2) zero-ℝ *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ zero-ℝ zero-ℝ by leq-sim-ℝ ( preserves-dist-sim-ℝ ( right-inverse-law-add-ℝ c) ( similarity-reasoning-ℝ raise-ℝ (l1 ⊔ l2) zero-ℝ *ℝ (pr1 y -ℝ pr1 x) ~ℝ zero-ℝ *ℝ (pr1 y -ℝ pr1 x) by preserves-sim-right-mul-ℝ _ _ _ ( symmetric-sim-ℝ (sim-raise-ℝ _ zero-ℝ)) ~ℝ zero-ℝ by left-zero-law-mul-ℝ _)) ≤ zero-ℝ by leq-sim-ℝ (diagonal-dist-ℝ zero-ℝ) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by is-nonnegative-real-ℝ⁰⁺ ( nonnegative-real-ℚ⁺ ε *ℝ⁰⁺ nonnegative-dist-ℝ _ _)))
The derivative of the identity function is 1
module _ {l : Level} ([a,b] : proper-closed-interval-ℝ l l) where abstract derivative-id-real-function-proper-closed-interval-ℝ : is-derivative-real-function-proper-closed-interval-ℝ ( [a,b]) ( pr1) ( λ _ → raise-ℝ l one-ℝ) derivative-id-real-function-proper-closed-interval-ℝ = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in is-derivative-modulus-of-real-function-proper-closed-interval-ℝ [a,b] ( _) ( _) ( λ ε → ( one-ℚ⁺ , λ x y _ → chain-of-inequalities dist-ℝ (pr1 y -ℝ pr1 x) (raise-ℝ l one-ℝ *ℝ (pr1 y -ℝ pr1 x)) ≤ dist-ℝ (pr1 y -ℝ pr1 x) (pr1 y -ℝ pr1 x) by leq-eq-ℝ ( ap-dist-ℝ ( refl) ( ( eq-sim-ℝ ( preserves-sim-right-mul-ℝ _ _ _ ( symmetric-sim-ℝ (sim-raise-ℝ _ _)))) ∙ ( left-unit-law-mul-ℝ _))) ≤ zero-ℝ by leq-sim-ℝ (diagonal-dist-ℝ _) ≤ real-ℚ⁺ ε *ℝ dist-ℝ (pr1 x) (pr1 y) by is-nonnegative-real-ℝ⁰⁺ ( nonnegative-real-ℚ⁺ ε *ℝ⁰⁺ nonnegative-dist-ℝ _ _)))
External links
- Derivative at Wikidata
Recent changes
- 2025-11-21. Louis Wasserman. Derivatives of real functions defined on proper closed intervals (#1680).